Adaptive Data Systems
自适应数据系统
基本信息
- 批准号:RGPIN-2019-05630
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data (management) systems have become a critical part of serving transactional requests from applications in many sectors such as science, business and health. Data systems are typically subjected to highly variable workloads in terms of transactional requests and load spikes. For example, e-commerce sites are subject to heavy and variable loads during holiday shopping sales while the sudden popularity of particular items can overwhelm the data system serving these requests. Provisioning more resources to boost system performance is a time-consuming process and takes much longer than the timespan over which the system load can increase. To deliver good performance in the face of unanticipated workload changes, it is crucial that data systems automatically adapt their behaviour to meet the variable workload demands of their clients. To deliver good performance through adaptivity, data systems need to understand the characteristics of the workloads that they execute.***This research program proposes to address these challenges. A dynamic data replication architecture will be developed and implemented to allow flexible, dynamic, allocation of resources without incurring the cost of data movement. For online transaction processing (OLTP) applications, this design incorporates algorithms that identify servers or sites where transactions can execute without distributed coordination while having enough resources to execute quickly. The challenge here is to identify which sites can offer better performance to particular transactions while ensuring that adequate resources are provisioned at that site. This adaptation will support dynamic mastership of data while maintaining even load distribution throughout the system.***This proposal advocates the need to understand the behavioural patterns of systems that execute data system workloads. This task entails the collection and analysis of system resource execution data for workload requests and their behaviour. The objective is to understand the conditions under which a system made particular algorithmic and resource usage decisions and to understand their effect on system performance, which would allow the configuration of the system to be optimized to deliver the best possible performance for workloads. Achieving this goal would enable the system to deliver superior performance over its un-optimized configurations that abound in most real-world data system deployments and require expensive, and extensive, manual tuning effort.**
数据(管理)系统已成为满足科学、商业和卫生等许多领域应用程序的事务请求的关键部分。就事务性请求和负载高峰而言,数据系统通常承受高度可变的工作负载。例如,电子商务网站在假日购物期间承受着沉重和可变的负载,而特定商品的突然流行可能会淹没服务于这些请求的数据系统。调配更多资源以提高系统性能是一个耗时的过程,所需时间比系统负载可能增加的时间跨度长得多。面对意外的工作负载变化,为了提供良好的性能,数据系统必须自动调整其行为,以满足其客户的不同工作负载需求。为了通过自适应提供良好的性能,数据系统需要了解它们执行的工作负载的特征。*本研究计划旨在解决这些挑战。将开发和实施动态数据复制架构,以便在不产生数据移动成本的情况下灵活、动态地分配资源。对于在线事务处理(OLTP)应用程序,此设计结合了识别服务器或站点的算法,在这些服务器或站点中,事务可以在没有分布式协调的情况下执行,同时具有足够的资源来快速执行。这里的挑战是确定哪些站点可以为特定事务提供更好的性能,同时确保在该站点提供足够的资源。这种适应将支持动态掌握数据,同时在整个系统中保持均匀的负载分布。*本提案主张有必要了解执行数据系统工作负载的系统的行为模式。这项任务需要收集和分析工作量请求及其行为的系统资源执行数据。目标是了解系统作出特定算法和资源使用决定的条件,并了解它们对系统性能的影响,这将使系统配置得到优化,从而为工作负载提供尽可能好的性能。实现这一目标将使系统能够提供优于其未优化配置的性能,未优化配置在大多数实际数据系统部署中随处可见,并且需要昂贵且广泛的手动调整工作。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daudjee, Khuzaima其他文献
A taxonomy of decentralized online social networks
- DOI:
10.1007/s12083-014-0258-2 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:4.2
- 作者:
Chowdhury, Shihabur Rahman;Roy, Arup Raton;Daudjee, Khuzaima - 通讯作者:
Daudjee, Khuzaima
Daudjee, Khuzaima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daudjee, Khuzaima', 18)}}的其他基金
Adaptive Data Systems
自适应数据系统
- 批准号:
RGPIN-2019-05630 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Partitioning for Partially Replicated Databases
部分复制数据库的动态分区
- 批准号:
543858-2019 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Data Systems
自适应数据系统
- 批准号:
RGPIN-2019-05630 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Partitioning for Partially Replicated Databases
部分复制数据库的动态分区
- 批准号:
543858-2019 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Data Systems
自适应数据系统
- 批准号:
RGPIN-2019-05630 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Partitioning for Partially Replicated Databases
部分复制数据库的动态分区
- 批准号:
543858-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Scalable and Consistent Management of Large Scale Data
大规模数据的可扩展且一致的管理
- 批准号:
RGPIN-2014-03670 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Consistent Management of Large Scale Data
大规模数据的可扩展且一致的管理
- 批准号:
RGPIN-2014-03670 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Consistent Management of Large Scale Data
大规模数据的可扩展且一致的管理
- 批准号:
RGPIN-2014-03670 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Consistent Management of Large Scale Data
大规模数据的可扩展且一致的管理
- 批准号:
RGPIN-2014-03670 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Data Systems
自适应数据系统
- 批准号:
RGPIN-2019-05630 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Understanding of Big Data for Smart Systems
智能系统大数据的自适应理解
- 批准号:
RGPIN-2020-05588 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2317190 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2107190 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2107014 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Adaptive Data Systems
自适应数据系统
- 批准号:
RGPIN-2019-05630 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Understanding of Big Data for Smart Systems
智能系统大数据的自适应理解
- 批准号:
RGPIN-2020-05588 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual