AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
基本信息
- 批准号:543881-2019
- 负责人:
- 金额:$ 9.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Agile manufacturing by the use of adaptive robots is the provision of advanced manufacturing, Industry 4.0, to enable more efficient, lean and cost-effective production of customized, large-scale but small batch size products. It is considered to be the ultimate solution for manufacturing industries hindered by their heavy reliance on manual labor. Aerospace industry is one of those industries that suffers greatly from lack of automation causing a backlog of new aircraft orders and prevents it from moving fast enough to adopt more efficient aircraft designs and advanced materials. An increased level of automation via the use of robots in manufacturing new aircrafts is pressing for not only cost reduction but also improved quality and safety in the aerospace industry. However, traditional industrial robots used in assembly lines of automotive industry and electronic devices is inadequate for the aerospace industry, because of small batch sizes, large components, diversity of products and a high level of complexity and variation in operations. Thus, the current practice of programming or teaching a robot for every specific task is limited, if not futile, in the aerospace industry. In advanced manufacturing and Industry 4.0, robots are intelligent, highly adaptive and can be trained to handle different equipment, tools, products and materials without a need for explicit programming. However, artificial intelligence-based learning methods require a large volume of data for capturing all possible physical experiences to train the robot, which can be too expensive or unavailable. Recent advances in robotics demonstrate the feasibility of learning from synthetic robot experiences and simulations. In the proposed project, we aim to develop a methodology to use learning results from simulation and virtual environments to robustly train a multi-arm adaptive robot for a wide range of aerospace manufacturing processes. This research partnership brings together the UBC, Kinova Inc., and Element AI, both prominent Canadian companies in the hi-tech sector, and in collaboration with the German Aerospace Centre DLR to build solutions for more effective manufacturing in aerospace industry.
使用自适应机器人的敏捷制造是先进制造业的一种,工业4.0,能够更高效,更精益和更具成本效益地生产定制的,大规模但小批量的产品。它被认为是制造业因严重依赖体力劳动而受阻的最终解决方案。航空航天工业是那些严重缺乏自动化的行业之一,导致新飞机订单积压,并阻止其快速采用更有效的飞机设计和先进材料。通过使用机器人制造新飞机来提高自动化水平,不仅降低了成本,而且提高了航空航天工业的质量和安全性。然而,传统的工业机器人用于汽车工业和电子设备的装配线是不够的航空航天工业,因为小批量,大部件,产品的多样性和高度的复杂性和操作的变化。因此,在航空航天工业中,目前为机器人编程或教授每项特定任务的做法即使不是徒劳的,也是有限的。在先进制造业和工业4.0中,机器人是智能的,具有高度的适应性,可以训练来处理不同的设备,工具,产品和材料,而不需要明确的编程。然而,基于人工智能的学习方法需要大量的数据来捕捉所有可能的物理经验来训练机器人,这可能太昂贵或不可用。机器人技术的最新进展证明了从合成机器人经验和模拟中学习的可行性。在拟议的项目中,我们的目标是开发一种方法,使用仿真和虚拟环境的学习结果,以强大的训练多臂自适应机器人,用于各种航空航天制造过程。这项研究合作伙伴关系汇集了UBC,Kinova Inc.,和Element AI,这两家公司都是加拿大高科技领域的知名公司,并与德国航空航天中心DLR合作,为航空航天工业更有效的制造提供解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Najjaran, Homayoun其他文献
SliceNet: A proficient model for real-time 3D shape-based recognition
- DOI:
10.1016/j.neucom.2018.07.061 - 发表时间:
2018-11-17 - 期刊:
- 影响因子:6
- 作者:
Chen, Xuzhan;Chen, Youping;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Multi-level information fusion for spatiotemporal monitoring in water distribution networks
- DOI:
10.1016/j.eswa.2014.11.014 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:8.5
- 作者:
Aminravan, Farzad;Sadiq, Rehan;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
A Critical Analysis of Industrial Human-Robot Communication and Its Quest for Naturalness Through the Lens of Complexity Theory.
- DOI:
10.3389/frobt.2022.870477 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Mukherjee, Debasmita;Gupta, Kashish;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Detecting 6D Poses of Target Objects From Cluttered Scenes by Learning to Align the Point Cloud Patches With the CAD Models
- DOI:
10.1109/access.2020.3034386 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Chen, Xuzhan;Chen, Youping;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Evidential Reasoning Using Extended Fuzzy Dempster-Shafer Theory for Handling Various Facets of Information Deficiency
- DOI:
10.1002/int.20491 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:7
- 作者:
Aminravan, Farzad;Sadiq, Rehan;Najjaran, Homayoun - 通讯作者:
Najjaran, Homayoun
Najjaran, Homayoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Najjaran, Homayoun', 18)}}的其他基金
Extended reality (XR) work-cell for safe human-centered robotics research
用于安全以人为本的机器人研究的扩展现实 (XR) 工作单元
- 批准号:
RTI-2023-00418 - 财政年份:2022
- 资助金额:
$ 9.62万 - 项目类别:
Research Tools and Instruments
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Detection system for screening of Household Hazardous Waste (HHW) in recycling facilities
用于筛选回收设施中的家庭危险废物 (HHW) 的检测系统
- 批准号:
570376-2021 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Safe and Robust Autonomous Vehicle Technology
安全稳健的自动驾驶汽车技术
- 批准号:
RGPIN-2017-06767 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Responsive and Robust Object Detection for Industrial Point Cloud Applications
适用于工业点云应用的响应灵敏、鲁棒的物体检测
- 批准号:
567583-2021 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Integration of AI into Manufacturing Execution System (IMES)
将人工智能集成到制造执行系统 (IMES)
- 批准号:
555220-2020 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Integration of AI into Manufacturing Execution System (IMES)
将人工智能集成到制造执行系统 (IMES)
- 批准号:
555220-2020 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Alliance Grants
Safe and Robust Autonomous Vehicle Technology
安全稳健的自动驾驶汽车技术
- 批准号:
RGPIN-2017-06767 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Detection and classification of plant pots in real time using artificial intelligence methods for mobile manipulators used in nursery farms and greenhouses
利用人工智能方法对苗圃和温室中使用的移动机械手进行花盆实时检测和分类
- 批准号:
538450-2019 - 财政年份:2019
- 资助金额:
$ 9.62万 - 项目类别:
Engage Grants Program
AIARA: Artificial Intelligence Enabled Highly Adaptive Robots for Aerospace Industry
AIARA:人工智能为航空航天工业提供高度自适应机器人
- 批准号:
543881-2019 - 财政年份:2019
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Fellowship