Fractional Laplacian Theory
分数拉普拉斯理论
基本信息
- 批准号:553018-2020
- 负责人:
- 金额:$ 0.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:University Undergraduate Student Research Awards
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guan, Vincent其他文献
Guan, Vincent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抛物型p-Laplacian方程解的渐近对称性及Liouville型定理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
p-Laplacian特征值的基本间隙研究
- 批准号:12101125
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
Wolff势及其在p-Laplacian型方程中的应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
图的结构参数与Laplacian谱
- 批准号:12001498
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
一类回火分数阶p-Laplacian算子的非线性问题研究
- 批准号:12001344
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
p-Laplacian微分和差分方程的同宿解及其定性分析
- 批准号:11901438
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
一类拟线性变分数阶Laplacian系统的可解性
- 批准号:11961078
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
多解p-Laplacian型椭圆方程的最优控制
- 批准号:11726619
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
多解p-Laplacian型椭圆方程的最优控制
- 批准号:11726620
- 批准年份:2017
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
图的距离谱与距离(无符号)Laplacian谱相关问题的研究
- 批准号:11626174
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
A Functional Analysis of the Hypoelliptic Laplacian
亚椭圆拉普拉斯算子的泛函分析
- 批准号:
DP230100434 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Projects
Exploiting the Weighted Graph Laplacian for Power Systems: High-Degree Contingency, Machine Learning, Data Assimilation, and Parallel-in-Time Integration
利用电力系统的加权图拉普拉斯:高度偶然性、机器学习、数据同化和并行时间集成
- 批准号:
2229378 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
- 批准号:
22H01122 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing a Laplacian-spectrum-based methodology for detailed modelling of complex networks
开发基于拉普拉斯谱的复杂网络详细建模方法
- 批准号:
22K13960 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952557 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952693 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952551 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Ergodicity and the Number of Nodal Domains of Eigenfunctions of the Laplacian
拉普拉斯本征函数的遍历性和节点域数
- 批准号:
2050123 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952669 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Magnetic Laplacian for Directed Networks
有向网络的磁拉普拉斯算子
- 批准号:
2277939 - 财政年份:2019
- 资助金额:
$ 0.33万 - 项目类别:
Studentship