Fractional Laplacian Theory

分数拉普拉斯理论

基本信息

  • 批准号:
    553018-2020
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guan, Vincent其他文献

Guan, Vincent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

抛物型p-Laplacian方程解的渐近对称性及Liouville型定理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
p-Laplacian特征值的基本间隙研究
  • 批准号:
    12101125
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
Wolff势及其在p-Laplacian型方程中的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
图的结构参数与Laplacian谱
  • 批准号:
    12001498
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
一类回火分数阶p-Laplacian算子的非线性问题研究
  • 批准号:
    12001344
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
p-Laplacian微分和差分方程的同宿解及其定性分析
  • 批准号:
    11901438
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
一类拟线性变分数阶Laplacian系统的可解性
  • 批准号:
    11961078
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
多解p-Laplacian型椭圆方程的最优控制
  • 批准号:
    11726619
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
多解p-Laplacian型椭圆方程的最优控制
  • 批准号:
    11726620
  • 批准年份:
    2017
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
图的距离谱与距离(无符号)Laplacian谱相关问题的研究
  • 批准号:
    11626174
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

A Functional Analysis of the Hypoelliptic Laplacian
亚椭圆拉普拉斯算子的泛函分析
  • 批准号:
    DP230100434
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Projects
Exploiting the Weighted Graph Laplacian for Power Systems: High-Degree Contingency, Machine Learning, Data Assimilation, and Parallel-in-Time Integration
利用电力系统的加权图拉普拉斯:高度偶然性、机器学习、数据同化和并行时间集成
  • 批准号:
    2229378
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
  • 批准号:
    22H01122
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a Laplacian-spectrum-based methodology for detailed modelling of complex networks
开发基于拉普拉斯谱的复杂网络详细建模方法
  • 批准号:
    22K13960
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952557
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952693
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952551
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Ergodicity and the Number of Nodal Domains of Eigenfunctions of the Laplacian
拉普拉斯本征函数的遍历性和节点域数
  • 批准号:
    2050123
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952669
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Magnetic Laplacian for Directed Networks
有向网络的磁拉普拉斯算子
  • 批准号:
    2277939
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了