Detection of COVID-19 in Intelligent Building Occupancy Management
智能建筑占用管理中的 COVID-19 检测
基本信息
- 批准号:555212-2020
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Measurement of building occupant information is important for energy efficiency, comfort, health, productivity, and security management. Given the current global pandemic, Distech Controls Inc. seeks to automatically detect building occupants with symptoms of COVID-19, or in close proximity to one another, and thereby limit propagation of the COVID-19 virus. The main objective of this project is to develop compact privacy-preserving deep learning (DL) models for building occupancy measurement systems that allow detecting people with high fevers, and in close proximity to others, and thereby limit the propagation of COVID-19. These models will rely on low-resolution multimodal (RGB and thermal IR) cameras that are co-located on a wall, portal, or ceiling of a building to estimate the physical distance, density, and temperature of people in a room. Expanding on its building occupancy measurement systems, Distech seeks to develop cost-effective DL models for cross-modal person detection, counting, and re-identification. This project involves a cross-disciplinary team from ETS and Distech, and will allow to intensify the exchange of ideas and resources, and establish long-term collaborative links. Focusing on the design of DL models for visual recognition applications from low, this project will focus on state-of-the-art research. By focusing on the development of cost-effective deep learning (DL) models for COVID detection through the multi-modal fusion of lower-resolution RGB-IR sensors, we anticipate that this project will lead to innovative AI technologies. Significant findings of this research project will be disseminated in high caliber scientific journals and conferences, and integrated into Distech building management solutions. This project also offers the opportunity for the training of highly qualified personnel to face current and future challenges in areas of strategic interest.
建筑乘员信息的测量对于能源效率,舒适性,健康,生产力和安全管理非常重要。 鉴于当前的全球大流行,Distech Controls Inc.试图自动检测出患有COVID-19症状的建筑物居民,或者彼此近距离接近,从而限制了Covid-19-19病毒的传播。该项目的主要目的是开发具有紧凑的隐私深度学习(DL)模型,用于建筑占用测量系统,这些系统允许检测高发烧的人,并靠近他人,从而限制了Covid-19的传播。这些模型将依靠在建筑物的墙壁,门户或天花板上共处的低分辨率多模式(RGB和热IR)摄像机来估计房间中人员的物理距离,密度和温度。为了扩展其建筑物占用测量系统,Distech试图开发具有成本效益的DL模型,以用于跨模式的人检测,计数和重新识别。该项目涉及来自ET和Distech的跨学科团队,并将允许加强思想和资源的交换,并建立长期的协作链接。该项目着重于低落的视觉识别应用程序的设计,该项目将重点放在最新的研究上。通过关注通过低分辨率RGB-IR传感器的多模式融合来开发具有成本效益的深度学习模型(DL)模型,我们预计该项目将导致创新的AI技术。该研究项目的重大发现将在高素质的科学期刊和会议中传播,并将其整合到分散的建筑管理解决方案中。该项目还为培训高素质的人员提供了机会,以面对战略兴趣领域的当前和未来挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Granger, Eric其他文献
Partially-supervised learning from facial trajectories for face recognition in video surveillance
- DOI:
10.1016/j.inffus.2014.05.006 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:18.6
- 作者:
De-la-Torre, Miguel;Granger, Eric;Gorodnichy, Dmitry O. - 通讯作者:
Gorodnichy, Dmitry O.
Cross-modal distillation for RGB-depth person re-identification
- DOI:
10.1016/j.cviu.2021.103352 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:4.5
- 作者:
Hafner, Frank M.;Bhuyian, Amran;Granger, Eric - 通讯作者:
Granger, Eric
Unsupervised Domain Adaptation in the Dissimilarity Space for Person Re-identification
- DOI:
10.1007/978-3-030-58583-9_10 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:0
- 作者:
Mekhazni, Djebril;Bhuiyan, Amran;Granger, Eric - 通讯作者:
Granger, Eric
On the memory complexity of the forward-backward algorithm
- DOI:
10.1016/j.patrec.2009.09.023 - 发表时间:
2010-01-15 - 期刊:
- 影响因子:5.1
- 作者:
Khreich, Wael;Granger, Eric;Sabourin, Robert - 通讯作者:
Sabourin, Robert
A paired sparse representation model for robust face recognition from a single sample
- DOI:
10.1016/j.patcog.2019.107129 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:8
- 作者:
Mokhayeri, Fania;Granger, Eric - 通讯作者:
Granger, Eric
Granger, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Granger, Eric', 18)}}的其他基金
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
RGPIN-2022-05397 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
- 批准号:
543663-2019 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
- 批准号:
543663-2019 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
- 批准号:
543663-2019 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
- 批准号:
RGPIN-2016-06783 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
A Comparison of Siamese Convolutional Neural Networks for Person Re-Identification in Video Surveillance**
视频监控中人员重新识别的连体卷积神经网络的比较**
- 批准号:
533701-2018 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Engage Grants Program
相似国自然基金
PCR过程中焦磷酸裸眼可视化及其在COVID-19检测中的应用
- 批准号:22274108
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
全喷墨打印的高灵敏度COVID-19双检测FET传感器
- 批准号:
- 批准年份:2021
- 资助金额:150 万元
- 项目类别:国际(地区)合作与交流项目
全喷墨打印的高灵敏度COVID-19双检测FET传感器
- 批准号:82161128015
- 批准年份:2021
- 资助金额:150.00 万元
- 项目类别:国际(地区)合作与交流项目
全喷墨打印的高灵敏度COVID-19双检测FET传感器
- 批准号:8211101107
- 批准年份:2021
- 资助金额:0.00 万元
- 项目类别:国际(地区)合作与交流项目
利用荧光阳离子共轭聚合物/核酸和噬菌体自组装体系建立高灵敏的COVID-19检测方法和筛选抗病毒治疗靶点
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别: