Adaptive Context-Based Systems for Face Recognition in Video Surveillance

视频监控中基于上下文的自适应人脸识别系统

基本信息

  • 批准号:
    RGPIN-2016-06783
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Still-to-video face recognition (FR) is an important function in video surveillance, where faces captured across a network of video cameras are matched against reference stills images. Currently, the performance of state-of-the-art systems is severely affected by the multiple non-stationary operational environments, defined by variations in, e.g., pose, illumination and camera viewpoint. Moreover, since an individual is typically enrolled using one or few reference stills captured during enrolment, face models are often poor representatives of the faces to be recognized during operations. ***The main objective of this research program is to investigate and develop new still-to-video FR systems for accurate spatio-temporal recognition of individuals of interest across multiple cameras. To compensate for the limited number of labeled reference stills available during enrolment, the system's facial models will adapt based on contextual information from its operational domain (Od) in order to sustain a high level of performance. In particular, this research relies on a bank of unlabeled (non-target) video trajectories from each different camera in a surveillance network. For each Od, this these systems will allow to: (1) model the distribution of capture conditions in facial trajectories according to feature and ROI quality spaces, (2) generate accurate detectors for each enrolled individual using instance- and feature-based methods for domain adaptation, (3) generate synthetic reference ROIs, (4) weight and integrate the response of each detector according to capture condition, and (5) perform efficient self-update of detectors driven by changes in capture conditions. This program is organized according to 3 axes: ***1. Modeling the capture conditions densities from Od trajectories.***2. Dynamic ensembles of exemplar SVMs that exploit domain adaptation for accurate detection of individuals. New techniques will be developed to assess classifier competence, self-update, and generate synthetic stills.***3. Extended sparse representation classifiers that use domain adaptation for accurate detection of individuals. New techniques will be developed to compress, synthetically generate, and specialize dictionaries to an Od.***Innovative techniques developed in this program will contribute to the emergence of context-sensitive FR technologies for watchlist screening, and for several other visual monitoring and recognition applications. As such, this research will remain relevant in the areas of pattern recognition, evolutionary computing and computer vision. Although government, military and law enforcement remain the principal users of video surveillance technologies, the recent emergence of many commercial applications and consumer devices will also offer excellent opportunities for partnering with companies, training HQP, and encourage future grant applications.**
静止到视频的人脸识别(FR)是视频监控中的一项重要功能,通过视频摄像机网络捕获的人脸与参考静止图像进行匹配。目前,最先进系统的性能受到多种非固定操作环境的严重影响,这些环境由姿势、照明和相机视点等变化所定义。此外,由于个体通常使用在登记过程中捕获的一个或几个参考静止图像进行登记,因此面部模型通常不能代表在操作中要识别的面部。该研究计划的主要目标是研究和开发新的静止到视频FR系统,用于跨多个摄像机对感兴趣的个体进行准确的时空识别。为了弥补注册过程中可用的有限数量的标记参考照片,系统的面部模型将根据其操作域(Od)的上下文信息进行调整,以保持高水平的性能。特别地,这项研究依赖于来自监控网络中每个不同摄像机的未标记(非目标)视频轨迹库。对于每个Od,这些系统将允许:(1)根据特征和ROI质量空间对捕获条件在面部轨迹中的分布进行建模;(2)使用基于实例和特征的方法对每个注册个体生成准确的检测器进行域自适应;(3)生成综合参考ROI;(4)根据捕获条件对每个检测器的响应进行加权和积分;(5)在捕获条件变化的驱动下对检测器进行有效的自更新。本程序按3个轴进行组织:***1。从Od轨迹建模捕获条件密度。***2。基于域自适应的样本支持向量机的动态集成。将开发新的技术来评估分类器的能力、自我更新和生成合成蒸馏物。扩展稀疏表示分类器,使用域自适应来准确检测个体。将开发新的技术来压缩、合成生成和专门化字典到Od。该项目开发的创新技术将有助于监视名单筛选和其他几种视觉监控和识别应用的上下文敏感FR技术的出现。因此,这项研究将在模式识别、进化计算和计算机视觉领域保持相关性。尽管政府、军事和执法部门仍然是视频监控技术的主要用户,但最近出现的许多商业应用和消费设备也将为与公司合作、培训HQP和鼓励未来的拨款申请提供极好的机会

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Granger, Eric其他文献

Partially-supervised learning from facial trajectories for face recognition in video surveillance
  • DOI:
    10.1016/j.inffus.2014.05.006
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    18.6
  • 作者:
    De-la-Torre, Miguel;Granger, Eric;Gorodnichy, Dmitry O.
  • 通讯作者:
    Gorodnichy, Dmitry O.
Graphical EM for on-line learning of grammatical probabilities in radar Electronic Support
  • DOI:
    10.1016/j.asoc.2012.02.022
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Latombe, Guillaume;Granger, Eric;Dilkes, Fred A.
  • 通讯作者:
    Dilkes, Fred A.
On the memory complexity of the forward-backward algorithm
  • DOI:
    10.1016/j.patrec.2009.09.023
  • 发表时间:
    2010-01-15
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Khreich, Wael;Granger, Eric;Sabourin, Robert
  • 通讯作者:
    Sabourin, Robert
A paired sparse representation model for robust face recognition from a single sample
  • DOI:
    10.1016/j.patcog.2019.107129
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Mokhayeri, Fania;Granger, Eric
  • 通讯作者:
    Granger, Eric
Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems

Granger, Eric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Granger, Eric', 18)}}的其他基金

Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
  • 批准号:
    DGDND-2022-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
  • 批准号:
    RGPIN-2022-05397
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
  • 批准号:
    543663-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
  • 批准号:
    543663-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Detection of COVID-19 in Intelligent Building Occupancy Management
智能建筑占用管理中的 COVID-19 检测
  • 批准号:
    555212-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alliance Grants
Deep Domain Adaptation and Fusion for Person Recognition in the Wild
用于野外人员识别的深度域适应和融合
  • 批准号:
    543663-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A Comparison of Siamese Convolutional Neural Networks for Person Re-Identification in Video Surveillance**
视频监控中人员重新识别的连体卷积神经网络的比较**
  • 批准号:
    533701-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program

相似国自然基金

基于Context建模的基因组数据压缩研究
  • 批准号:
    61861045
  • 批准年份:
    2018
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目
Focus+Context支持的群集三维对象变形可视化
  • 批准号:
    41671381
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于Context建模的熵编码及其应用研究
  • 批准号:
    61062005
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Context-Based Systems for Face Recognition in Video Surveillance
视频监控中基于上下文的自适应人脸识别系统
  • 批准号:
    RGPIN-2016-06783
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Context-Adaptive Intelligent Mechanism of Personalized Robots Based on Learning of Cognitive Behavioral Experiences
基于认知行为经验学习的个性化机器人情境自适应智能机制
  • 批准号:
    16H01748
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
IRES: Avatar-based Adaptive Context System
IRES:基于阿凡达的自适应上下文系统
  • 批准号:
    1458272
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Adaptive Service Reconfigurable Architecture based on Context Information
基于上下文信息的自适应服务可重构架构
  • 批准号:
    15H02783
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Research of Adaptive User Support System based on Context Awareness
基于情境感知的自适应用户支持系统研究
  • 批准号:
    24700214
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
SBIR Phase II: Adaptive Personalization and Context Management for Location-Based Mobile Devices (AdaptTribe)
SBIR 第二阶段:基于位置的移动设备的自适应个性化和上下文管理 (AdaptTribe)
  • 批准号:
    0349778
  • 财政年份:
    2004
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了