Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
基本信息
- 批准号:RGPIN-2016-03816
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns the stability of non-monotone traveling waves for a class of time-delayed degenerate reaction-diffusion equations, including two typical models of Nicholson's blowflies equation and Mackay-Glass equation, which describe the population dynamics of the single species with age-structure, such as Australian blowflies. These equations possess a class of important solutions, the so-called traveling waves. The topic for the stability of oscillatory traveling waves is brand new, and the related research work is also very limited. When the birth rate function is non-monotone and the time-delay is large, or the degeneracy of the equation is strong, the traveling waves are tested to be oscillating. From both mathematical and biological points of view, it is very significant but also challenging to investigate the asymptotic stability of these non-montone waves, because these waves portray the essential feature and structure of this class of reaction-diffusion equations with delay. The wave stability is an important issue and one of hot research spots by paying great attention. The degeneracy and the non-monotonicity of both the working equations and the targeted wavefronts make the study more complicated and difficult, and many open questions are still like mystery, such as global stability for non-critical oscillating wavefronts, particularly the global stability for critical oscillating wavefronts, the convergence rates of the original solutions to these wavefronts, bifurcation of solutions with a really large time-delay, numerical computations, and so on. Since the existing methods cannot be directly applied to solve these questions, we need to look for some new ideas and new strategies. To attack these problems will be the main concerning in this proposal.
本文研究了一类时滞退化反应扩散方程的非单调行波解的稳定性,其中包括描述具有年龄结构的单种群种群(如澳大利亚绿头苍蝇)的Nicholson方程和Mackay-Glass方程两个典型模型.这些方程具有一类重要的解,即所谓的行波。振荡行波的稳定性是一个全新的课题,相关的研究工作也非常有限。当出生率函数为非单调函数且时滞较大时,或方程的退化性较强时,行波被检验为振荡的。从数学和生物学的角度来看,研究这类非单调波的渐近稳定性是非常有意义的,但也是具有挑战性的,因为这些非单调波刻画了这类时滞反应扩散方程的本质特征和结构.波浪稳定性是一个重要的问题,也是人们十分关注的研究热点之一。 工作方程和目标波前的退化性和非单调性使得研究变得更加复杂和困难,许多未解决的问题仍然像谜一样,如非临界振荡波前的全局稳定性,特别是临界振荡波前的全局稳定性,这些波前的原始解的收敛速度,具有很大时滞的解的分支,由于现有的方法不能直接应用于解决这些问题,我们需要寻找一些新思路和新策略。解决这些问题将是本方案的主要内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei, Ming其他文献
Identification of a Novel Myc-Regulated Gene Signature for Patients with Kidney Renal Clear Cell Carcinoma.
- DOI:
10.1155/2022/3487859 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Fu, Shengqiang;Liu, Yifu;Zhang, Zhicheng;Mei, Ming;Chen, Qiang;Wang, Siyuan;Yang, Xiaorong;Sun, Ting;Ma, Ming;Xie, Wenjie - 通讯作者:
Xie, Wenjie
Optical Gain of Vertically Coupled Cd(0.6)Zn(0.4)Te/ZnTe Quantum Dots.
- DOI:
10.3390/nano13040716 - 发表时间:
2023-02-13 - 期刊:
- 影响因子:5.3
- 作者:
Mei, Ming;Kim, Minju;Kim, Minwoo;Kim, Inhong;Lee, Hong Seok;Taylor, Robert A.;Kyhm, Kwangseuk - 通讯作者:
Kyhm, Kwangseuk
Microcalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method
使用 PFCM 聚类和基于加权 SVM 的方法检测全视野数字乳房 X 光照片中的微钙化
- DOI:
10.1186/s13634-015-0249-3 - 发表时间:
2015-08-12 - 期刊:
- 影响因子:1.9
- 作者:
Liu, Xiaoming;Mei, Ming;Hu, Wei - 通讯作者:
Hu, Wei
Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors
半导体多维单极流体动力学模型渐近收敛于平面驻波
- DOI:
10.1016/j.jde.2011.04.007 - 发表时间:
2011-08 - 期刊:
- 影响因子:2.4
- 作者:
Huang, Feimin;Mei, Ming;Wang, Yong;Yu, Huimin - 通讯作者:
Yu, Huimin
Shear deformation characteristics and defect evolution of the biaxial ±45° and 0/90° glass non-crimp fabrics
双轴/-45°和0/90°玻璃无卷曲织物的剪切变形特性及缺陷演变
- DOI:
10.1016/j.compscitech.2020.108137 - 发表时间:
2020-06-16 - 期刊:
- 影响因子:9.1
- 作者:
Mei, Ming;He, Yujia;Fang, Daining - 通讯作者:
Fang, Daining
Mei, Ming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei, Ming', 18)}}的其他基金
Sharp traveling waves for degenerate diffusion equations with delay
具有延迟的简并扩散方程的尖锐行波
- 批准号:
RGPIN-2022-03374 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
- 批准号:
354724-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
- 批准号:
354724-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
- 批准号:
354724-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
- 批准号:
354724-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Jointly convex operator perspective map having the power monotone property.
具有幂单调性质的联合凸算子透视图。
- 批准号:
23K03141 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithms and lower bounds for monotone dualization and tensor decomposition of constraint satisfaction hypergraphs
约束满足超图的单调对偶化和张量分解的算法和下界
- 批准号:
576241-2022 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Alliance Grants
CIF: Small: Signal Recovery Beyond Minimization: A Monotone Inclusion Framework
CIF:小:超越最小化的信号恢复:单调包含框架
- 批准号:
2211123 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic Triangulation of Monotone families
单调族的算法三角剖分
- 批准号:
2427789 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Quantum Steenrod operations in non-monotone symplectic manifolds.
非单调辛流形中的量子斯汀罗德运算。
- 批准号:
2434378 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Monotone Methods in Reputations: Behavioral Predictions and Reputation Sustainability
声誉中的单调方法:行为预测和声誉可持续性
- 批准号:
1947021 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
- 批准号:
19K13666 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algorithms for Monotone Fixed-Point Computation Problems
单调定点计算问题的算法
- 批准号:
2265056 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Studentship