Sharp traveling waves for degenerate diffusion equations with delay

具有延迟的简并扩散方程的尖锐行波

基本信息

  • 批准号:
    RGPIN-2022-03374
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research proposal concerns the study of partial differential equations arising from ecology, a class of degenerate diffusion equations with delay, which describe the population dynamics of the single species with age-structure, such as Australian blowflies. Degenerate diffusion caused by competition between conspecifics or deteriorating environmental conditions is a common feature of population spreading modeling in ecology, however, there are numerous gaps in our knowledge about the wave dynamical behaviors of degenerate diffusion equations compared with the well-studied linear diffusion case. The degeneracy usually causes the solutions to lose their regularities, and raises the possibility of sharp type traveling waves, where the population density decreases to zero at a finite point, rather than decaying to zero asymptotically. On the other hand, the large time-delay often causes the solutions to be oscillating. These two facts make the structure of solutions more complicated and the relevant study more challenging.    The purpose of this research project is to understand the effects of time-delay and degeneracy of diffusion for the population dynamic models. The main objectives include: One is about the structure of traveling waves. Affected by the time-delay and degeneracy of diffusion, we are particularly interested in the classification of sharp traveling waves, oscillatory traveling waves, and oscillatory sharp wavefronts. We will try to prove the existence/non-existence of these waves, and clarify what will be the criteria and mechanism for the population dynamic system to possess these wavefronts. The second issue is to try to study the stability of these wavefronts, in particular, the sharp waves and oscillating sharp waves. Because, the structure of sharp waves is totally different from the monotone/non-monotone traveling waves, and the asymptotic stability of these wavefronts is quite challenging and never treated.    The proposed research program is expected to advance and enrich the theory of degenerate diffusion equations with time-delay, to introduce new mathematical ideas and methods to study stability of sharp wavefronts, and also to provide good opportunity to train Ph.D. students and postdocs by carrying out this project.
本文研究了生态学中一类退化的时滞扩散方程--偏微分方程,该方程描述了具有年龄结构的单种群的种群动态,如澳大利亚绿头苍蝇。由于种群竞争或环境条件恶化而引起的退化扩散是生态学中种群扩散模型的一个常见特征,然而,与已有的线性扩散模型相比,退化扩散方程的波动动力学行为还存在许多不足.简并性通常会导致解失去它们的解,并提高了尖锐型行波的可能性,其中种群密度在有限点处减小到零,而不是渐近衰减到零。另一方面,大的时滞往往会导致解的振荡。这两个事实使得解的结构更加复杂,相关的研究也更具挑战性。 本研究的目的是了解扩散的时滞和退化对种群动力学模型的影响。主要目的包括:一是行波的结构。受扩散的时滞和简并性的影响,我们对尖行波、振荡行波和振荡尖波前的分类特别感兴趣。我们将试图证明这些波的存在/不存在,并澄清什么将是标准和机制的人口动力系统拥有这些波前。第二个问题是试图研究这些波前的稳定性,特别是尖波和振荡尖波。因为,尖波的结构完全不同于单调/非单调行波,并且这些波前的渐近稳定性是相当具有挑战性的,并且从未处理过。 该研究项目的提出将进一步丰富和发展退化时滞扩散方程的理论,为研究尖波前稳定性引入新的数学思想和方法,并为培养博士生提供良好的机会。学生和博士后通过执行这个项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mei, Ming其他文献

Identification of a Novel Myc-Regulated Gene Signature for Patients with Kidney Renal Clear Cell Carcinoma.
  • DOI:
    10.1155/2022/3487859
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fu, Shengqiang;Liu, Yifu;Zhang, Zhicheng;Mei, Ming;Chen, Qiang;Wang, Siyuan;Yang, Xiaorong;Sun, Ting;Ma, Ming;Xie, Wenjie
  • 通讯作者:
    Xie, Wenjie
Optical Gain of Vertically Coupled Cd(0.6)Zn(0.4)Te/ZnTe Quantum Dots.
  • DOI:
    10.3390/nano13040716
  • 发表时间:
    2023-02-13
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Mei, Ming;Kim, Minju;Kim, Minwoo;Kim, Inhong;Lee, Hong Seok;Taylor, Robert A.;Kyhm, Kwangseuk
  • 通讯作者:
    Kyhm, Kwangseuk
Microcalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method
使用 PFCM 聚类和基于加权 SVM 的方法检测全视野数字乳房 X 光照片中的微钙化
Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors
半导体多维单极流体动力学模型渐近收敛于平面驻波
  • DOI:
    10.1016/j.jde.2011.04.007
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Huang, Feimin;Mei, Ming;Wang, Yong;Yu, Huimin
  • 通讯作者:
    Yu, Huimin
Shear deformation characteristics and defect evolution of the biaxial ±45° and 0/90° glass non-crimp fabrics
双轴/-45°和0/90°玻璃无卷曲织物的剪切变形特性及缺陷演变
  • DOI:
    10.1016/j.compscitech.2020.108137
  • 发表时间:
    2020-06-16
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Mei, Ming;He, Yujia;Fang, Daining
  • 通讯作者:
    Fang, Daining

Mei, Ming的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mei, Ming', 18)}}的其他基金

Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
  • 批准号:
    354724-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
  • 批准号:
    354724-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
  • 批准号:
    354724-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
  • 批准号:
    354724-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

超声行波微流体驱动机理的试验研究
  • 批准号:
    51075243
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
  • 批准号:
    2309174
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Traveling waves in neocortical circuits: Mechanisms, computational roles in sensory processing, and impact on sensory perception
新皮质回路中的行波:感觉处理中的机制、计算作用以及对感觉知觉的影响
  • 批准号:
    10655101
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Analysis of Free Boundaries: Contact Lines and Viscous Traveling Waves
自由边界分析:接触线和粘性行波
  • 批准号:
    2204912
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Compact traveling waves for mean-curvature flow with driving force
带驱动力的平均曲率流的紧凑行波
  • 批准号:
    18K13458
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Soft Continuous Track Mechanism That Enables Omnidirectional Motion by Generating Traveling Waves on a Track
软连续轨道机构,通过在轨道上产生行波来实现全向运动
  • 批准号:
    19K21061
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Brain stimulation for cognitive enhancement based on modulation of cortical traveling waves
基于皮质行波调制的脑刺激用于认知增强
  • 批准号:
    9767284
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了