Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
基本信息
- 批准号:RGPIN-2016-03687
- 负责人:
- 金额:$ 4.59万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I am interested in developing a compelling theory of big data. Such a theory will depend on Kolmogorov complexity and information distance. Kolmogorov complexity is defined on one object. Information distance [C. Bennett, P. Gacs, M. Li, P. Vitanyi, W. Zurek, Information distance, IEEE Tran-IT, 44:4(1998)] is defined on two objects. This concept can be generalized to many objects. Using such a theory it is possible to optimally approximate the intuitive concept of "semantic distance" or closeness of two piece of data, in general. The key to this theory is to compress the data. Many ways of compressing data will be studied, including error encoding, clustering, and especially deep neural networks. Deep neural networks can be considered as ways of compressing data, especially big data. The following short-term goals are in tune with the above main theme of this research:
1) Deep learning in natural language processing (NLP). My group has trained a Convolutional Neural Network (CNN) to map natural language questions to a database structured query with a limited number of relations. This work will continue. My group also has trained a Recurrent Neural Network (RNN) for conversation or chatting. This work will be extended to context sensitive chatting. This work will have two implications with the long term goal: a) Neural network will be studied as one way to approximate semantic distance; and b) Only with big data from the internet, this approach is practically useful.
2) Bioinformatics. A CNN has also been trained for protein identification as well as for peak-picking in mass spectrometry protein quantitation. These studies and methodologies will be extended to protein quantitation. This work again depends on huge amount of training data I have obtained from industry.
These deep learning approaches will not be studied in isolation. They will be studied together with my theory of approximating semantic distance by information distance, experimenting with the efficiency of using deep neural networks as compression methods to deal with big data when there are no clear rules of compressing. I will also spend 8 months full time to revise his research book with Paul Vitanyi "An introduction to Kolmogorov complexity and its applications", that will include these new results.
Several other short-term topics in bioinformatics will be studied. One is an antibody sequencing algorithm. I plan to design a new algorithm using linear programming to solve a bioinformatics industrial problem of antibody sequencing. Another problem is to apply the ideas in bioinformatics to other fields: optimal spaced seeds were invented by my group to do homology search. This has been considered one of the most influential innovations in bioinformatics during the last 15 years. I have the idea of using the optimal spaced seed idea to develop an observation theory to detect the trends in time series. Initial experiments were performed successfully.
我对开发一个引人注目的大数据理论很感兴趣。这种理论将取决于柯尔莫哥洛夫复杂度和信息距离。Kolmogorov复杂度定义在一个对象上。信息距离[C]。张晓明,李晓明,张晓明,张晓明。信息距离的概念与方法[j] .信息学报,2016,44(4):555 - 557。这个概念可以推广到许多对象。一般来说,使用这样的理论可以最优地近似直观的“语义距离”概念或两个数据块的接近度。这个理论的关键是压缩数据。许多压缩数据的方法将被研究,包括错误编码,聚类,特别是深度神经网络。深度神经网络可以看作是一种压缩数据,尤其是大数据的方法。以下短期目标与上述研究主题一致:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Ming其他文献
Identification of surrogate prognostic biomarkers for allergic asthma in nasal epithelial brushing samples by WGCNA
通过 WGCNA 鉴定鼻上皮刷洗样本中过敏性哮喘的替代预后生物标志物
- DOI:
10.1002/jcb.27790 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:4
- 作者:
Liu, Zhaoyu;Li, Ming;Yi, Gao - 通讯作者:
Yi, Gao
Biomechanics and Neuromuscular Control Training in Table Tennis Training Based on Big Data.
- DOI:
10.1155/2022/3725295 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qu, Qingling;An, Meiling;Zhang, Jinqian;Li, Ming;Li, Kai;Kim, Sukwon - 通讯作者:
Kim, Sukwon
Efficacy and safety of Paxlovid in severe adult patients with SARS-Cov-2 infection: a multicenter randomized controlled study.
- DOI:
10.1016/j.lanwpc.2023.100694 - 发表时间:
2023-04 - 期刊:
- 影响因子:7.1
- 作者:
Liu, Jiao;Pan, Xiaojun;Zhang, Sheng;Li, Ming;Ma, Ke;Fan, Cunyi;Lv, Ying;Guan, Xiangdong;Yang, Yi;Ye, Xiaofei;Deng, Xingqi;Wang, Yunfeng;Qin, LunXiu;Xia, Zhijie;Ge, Zi;Zhou, Quanhong;Zhang, Xian;Ling, Yun;Qi, Tangkai;Wen, Zhenliang;Huang, Sisi;Zhang, Lidi;Wang, Tao;Liu, Yongan;Huang, Yanxia;Li, Wenzhe;Du, Hangxiang;Chen, Yizhu;Xu, Yan;Zhao, Qiang;Zhao, Ren;Annane, Djillali;Qu, Jieming;Chen, Dechang - 通讯作者:
Chen, Dechang
Application of digital guide plate with drill-hole sharing technique in the mandible reconstruction.
- DOI:
10.1016/j.jds.2023.02.006 - 发表时间:
2023-10 - 期刊:
- 影响因子:3.5
- 作者:
Wang, Li-dong;Ma, Wen;Fu, Shuai;Zhang, Chang-bin;Cui, Qing-ying;Peng, Can-bang;Wang, Si-hang;Li, Ming - 通讯作者:
Li, Ming
Correlated evolution of social organization and lifespan in mammals.
- DOI:
10.1038/s41467-023-35869-7 - 发表时间:
2023-01-31 - 期刊:
- 影响因子:16.6
- 作者:
Zhu, Pingfen;Liu, Weiqiang;Zhang, Xiaoxiao;Li, Meng;Liu, Gaoming;Yu, Yang;Li, Zihao;Li, Xuanjing;Du, Juan;Wang, Xiao;Grueter, Cyril C.;Li, Ming;Zhou, Xuming - 通讯作者:
Zhou, Xuming
Li, Ming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Ming', 18)}}的其他基金
Kolmogorov complexity and algorithms for immunopeptidomics
免疫肽组学的柯尔莫哥洛夫复杂性和算法
- 批准号:
RGPIN-2022-02942 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
- 批准号:
RGPIN-2016-03687 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
- 批准号:
RGPIN-2016-03687 - 财政年份:2019
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
- 批准号:
RGPIN-2016-03687 - 财政年份:2018
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
- 批准号:
RGPIN-2016-03687 - 财政年份:2017
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Unravelling snowscapes complexity and its impacts on modelled snow cover evolution in northern regions
揭示雪景的复杂性及其对北部地区积雪演化模型的影响
- 批准号:
RGPNS-2022-04631 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
Unravelling snowscapes complexity and its impacts on modelled snow cover evolution in northern regions
揭示雪景的复杂性及其对北部地区积雪演化模型的影响
- 批准号:
RGPIN-2022-04631 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
- 批准号:
RGPIN-2016-03687 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
CSR: Small: Evolution of Computer Vision for Low Power Devices, Breaking its Power Wall and Computational Complexity
CSR:小:低功耗设备计算机视觉的发展,打破其功耗墙和计算复杂性
- 批准号:
2146726 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
Low-complexity research for next-generation VVC standard and its neural network extension
下一代VVC标准及其神经网络扩展的低复杂度研究
- 批准号:
21K17770 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
- 批准号:
2048877 - 财政年份:2020
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
Research on the Basic Properties of Chaotic Loewner Evolution and Its Application to Neuronal Morphology
混沌Loewner进化的基本性质及其在神经形态学中的应用研究
- 批准号:
20J20867 - 财政年份:2020
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
- 批准号:
RGPIN-2015-04656 - 财政年份:2019
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Kolmogorov complexity and its applications
柯尔莫哥洛夫复杂度及其应用
- 批准号:
RGPIN-2016-03687 - 财政年份:2019
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Development of a nursing support model to foster socialization and autonomy in children with medical complexity and its effectiveness
开发护理支持模式以促进患有医疗复杂性的儿童的社会化和自主性及其有效性
- 批准号:
19K24176 - 财政年份:2019
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Research Activity Start-up