Mitigating Risks Associated with Big Data Solutions

降低与大数据解决方案相关的风险

基本信息

  • 批准号:
    RGPIN-2015-06075
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Today's ubiquitous communication and computing technologies generate magnitudes of data far beyond that available even a decade ago. The Big Data technology and services market is expected to grow at a compound annual rate of 27% from $9.8 billion in 2012 to $32.4 billion in 2017, leading to multi-fold increase in the amount of technical data generated. Modern organisations have unprecedented opportunities to gain new knowledge about their products, processes and services, which can be used to make projects more efficient, improve products and services, identify problems, take pre-emptive measures, and adapt business goals to new opportunities. Applications of new knowledge include predictive models which reduce, for example, hospital readmission rates, traffic congestion, and unnecessary power generation. Exploiting these opportunities requires addressing challenges posed by solutions for processing Big Data (BDS). These complex solutions have many dynamic components, such as distributed compute nodes, networks, databases, middleware, and business intelligence layers. Any component can fail its interactions with others, possibly leading to crashing failure of the solution or quality degradation (e.g., performance, reliability, security). Therefore, they are challenging to develop and maintain. Big Data environments lack methods, tools, processes and techniques to support the disciplined development and maintenance of BDS. Despite a significant body of knowledge on processing data generated by BDS, most techniques cannot process the volumes of operational data generated by BDS. My goal is to help improve testing and maintenance of the BDS by reaching the following objectives: 1) Build defect prediction models for the BDS to improve its General Testing and Maintenance process; 2) Develop trace analysis for the BDS to speed up root cause determination and the removal of redundant test cases. To reach the objectives, I will create novel scalable methods, techniques, and tools capable of processing the operational data. To the best of my knowledge, these objectives are novel and significant for practice. The anticipated results will help create a preliminary theory of automated problem determination techniques for BDS. Transfer of the results to Canadian industry will improve product quality and speed up defect detection and fixing, allowing developers to create more new functionality, and reduce maintenance effort and investment.
今天无处不在的通信和计算技术产生的数据量远远超过十年前。大数据技术和服务市场预计将以27%的复合年增长率增长,从2012年的98亿美元增长到2017年的324亿美元,导致产生的技术数据量成倍增长。现代组织有前所未有的机会获得有关其产品,流程和服务的新知识,这些知识可用于提高项目效率,改进产品和服务,发现问题,采取先发制人的措施,并使业务目标适应新的机会。新知识的应用包括预测模型,例如,减少医院再入院率,交通拥堵和不必要的发电。 利用这些机会需要应对处理大数据(BDS)的解决方案所带来的挑战。这些复杂的解决方案具有许多动态组件,例如分布式计算节点、网络、数据库、中间件和商业智能层。任何组件都可能无法与其他组件进行交互,可能导致解决方案崩溃或质量下降(例如,性能、可靠性、安全性)。因此,它们的开发和维护具有挑战性。 大数据环境缺乏方法,工具,流程和技术来支持BDS的规范开发和维护。尽管在处理工商发展服务产生的数据方面有大量的知识,但大多数技术都无法处理工商发展服务产生的大量业务数据。我的目标是通过达到以下目标来帮助改进BDS的测试和维护:1)为BDS构建缺陷预测模型,以改进其一般测试和维护过程; 2)为BDS开发跟踪分析,以加快根本原因确定和删除冗余测试用例。为了实现目标,我将创建能够处理操作数据的新颖的可扩展方法,技术和工具。 据我所知,这些目标是新颖的,对实践具有重要意义。预期的结果将有助于创建一个初步的理论自动化的问题确定技术的BDS。将成果转移到加拿大工业将提高产品质量,加快缺陷检测和修复,使开发人员能够创建更多的新功能,并减少维护工作和投资。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miranskyy, Andriy其他文献

Miranskyy, Andriy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miranskyy, Andriy', 18)}}的其他基金

Improving Quality of Large-scale Software: Cloud-based and Quantum-computing-based Solutions
提高大型软件的质量:基于云和量子计算的解决方案
  • 批准号:
    RGPIN-2022-03886
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
  • 批准号:
    RGPIN-2015-06075
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Improve Robustness and Transparency of Cloud Platforms
提高云平台的稳健性和透明度
  • 批准号:
    538493-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative Research and Development Grants
Improve Robustness and Transparency of Cloud Platforms
提高云平台的稳健性和透明度
  • 批准号:
    538493-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative Research and Development Grants
Improve Robustness and Transparency of Cloud Platforms
提高云平台的稳健性和透明度
  • 批准号:
    538493-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative Research and Development Grants
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
  • 批准号:
    RGPIN-2015-06075
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Regression testing of datasets
数据集的回归测试
  • 批准号:
    521895-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
  • 批准号:
    RGPIN-2015-06075
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
  • 批准号:
    RGPIN-2015-06075
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable simulation for management of large and dense crowds
用于管理大量密集人群的可扩展模拟
  • 批准号:
    507051-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program

相似海外基金

Towards Evaluating and Managing Risks Associated with Legacy Wells and Offshore Gas Storage in Scotland
评估和管理与苏格兰传统油井和海上天然气储存相关的风险
  • 批准号:
    2902920
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Development and validation of innovative cellular models to predict breast cancer risks associated with endocrine disruptors such as PBDEs and their successors
开发和验证创新细胞模型,以预测与内分泌干扰物(如 PBDE 及其后继者)相关的乳腺癌风险
  • 批准号:
    491637
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Miscellaneous Programs
Risks and benefits associated with stroke antithrombotic therapy in the new antithrombotics era
新抗栓时代中风抗栓治疗的风险和益处
  • 批准号:
    23H02831
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evaluation of micro- and nanoplastics in Canadian drinking water, their role as vectors of pathogen and chemical transport and associated health risks
评估加拿大饮用水中的微米和纳米塑料、它们作为病原体和化学品运输载体的作用以及相关的健康风险
  • 批准号:
    556182-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alliance Grants
FoodSafeR - A joined-up approach to the identification, assessment and management of emerging food safety hazards and associated risks
FoodSafeR - 识别、评估和管理新出现的食品安全危害和相关风险的联合方法
  • 批准号:
    10040484
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    EU-Funded
Quantitative microbial risk assessment of short-term risks associated with Legionella in building water systems
建筑供水系统中与军团菌相关的短期风险的定量微生物风险评估
  • 批准号:
    558161-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Postdoctoral Fellowships
Understanding the risks associated with contaminated floodwater from urban drainage systems
了解城市排水系统受污染洪水的相关风险
  • 批准号:
    2764676
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Informing Kanehsatake First Nation about the risks associated with radon exposure
向 Kanehsatake 原住民通报与氡暴露相关的风险
  • 批准号:
    468212
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Miscellaneous Programs
Understanding extreme wind gusts and associated risks in NSW
了解新南威尔士州的极端阵风和相关风险
  • 批准号:
    LP200100138
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Linkage Projects
A patient-specific computational technique to predict spine injury risks associated with physical activities
一种针对患者的计算技术,用于预测与体力活动相关的脊柱损伤风险
  • 批准号:
    10393017
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了