Improving Quality of Large-scale Software: Cloud-based and Quantum-computing-based Solutions
提高大型软件的质量:基于云和量子计算的解决方案
基本信息
- 批准号:RGPIN-2022-03886
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to mitigate two groups of risks that emerge during software development and maintenance. The first group pertains to building robust large-scale Cloud solutions. The second group is the result of the emergence and growing application of quantum computers. Our objectives are to improve health monitoring of Cloud systems, make software quantum-safe, improve the quality of software running on quantum computers, and speed up software engineering tasks with the help of quantum computers. The expected results would boost the robustness of Cloud services (from critical services to e-commerce platforms). Moreover, they will make software products (such as web browsers and databases) more secure by showing how to make them quantum-safe. Furthermore, they will improve the software quality for quantum computers, which may facilitate research and development in various fields (for instance, physics, chemistry, and pharmacology).
这项建议旨在减轻软件开发和维护期间出现的两类风险。第一组涉及构建强大的大规模云解决方案。第二组是量子计算机的出现和日益增长的应用的结果。我们的目标是改善云系统的健康监控,使软件量子安全,提高量子计算机上运行的软件质量,并在量子计算机的帮助下加快软件工程任务。预期的结果将提高云服务的稳健性(从关键服务到电子商务平台)。此外,他们将通过展示如何使软件产品(如Web浏览器和数据库)更加安全。此外,它们将提高量子计算机的软件质量,这可能有助于各个领域(例如物理学,化学和药理学)的研究和开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miranskyy, Andriy其他文献
Miranskyy, Andriy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miranskyy, Andriy', 18)}}的其他基金
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
- 批准号:
RGPIN-2015-06075 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Improve Robustness and Transparency of Cloud Platforms
提高云平台的稳健性和透明度
- 批准号:
538493-2018 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Improve Robustness and Transparency of Cloud Platforms
提高云平台的稳健性和透明度
- 批准号:
538493-2018 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
- 批准号:
RGPIN-2015-06075 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Improve Robustness and Transparency of Cloud Platforms
提高云平台的稳健性和透明度
- 批准号:
538493-2018 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
- 批准号:
RGPIN-2015-06075 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Regression testing of datasets
数据集的回归测试
- 批准号:
521895-2018 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
- 批准号:
RGPIN-2015-06075 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Mitigating Risks Associated with Big Data Solutions
降低与大数据解决方案相关的风险
- 批准号:
RGPIN-2015-06075 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Scalable simulation for management of large and dense crowds
用于管理大量密集人群的可扩展模拟
- 批准号:
507051-2016 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
相似海外基金
Sediment connectivity in large landslides based on quality-maximized digital elevation models derived from historical aerial photography and UAV imagery
基于源自历史航空摄影和无人机图像的质量最大化数字高程模型的大型滑坡中的沉积物连通性
- 批准号:
24K04397 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226918 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226908 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Development of Guidelines for Quality Assurance of Blended Learning Based on Large-scale Surveys of Universitys' Lecturers and Students
基于对大学教师和学生的大规模调查制定混合学习质量保证指南
- 批准号:
23K02531 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LTLS Freshwater Ecosystems ("LTLS-FE"): Analysis and future scenarios of Long-Term and Large-Scale freshwater quality and impacts
LTLS 淡水生态系统(“LTLS-FE”):长期和大规模淡水质量和影响的分析和未来情景
- 批准号:
NE/X015688/1 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Leveraging Mammalian Cancers, Platinum-Quality Genome Assemblies, and Large-Scale Data to Identify Mechanisms of Rare Human Cancers
利用哺乳动物癌症、白金级基因组组装和大规模数据来识别罕见人类癌症的机制
- 批准号:
10677546 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
LTLS Freshwater Ecosystems ("LTLS-FE"): Analysis and future scenarios of Long-Term and Large-Scale freshwater quality and impacts
LTLS 淡水生态系统(“LTLS-FE”):长期和大规模淡水质量和影响的分析和未来情景
- 批准号:
NE/X015718/1 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
High-quality large area growth of 2D materials for device applications
用于器件应用的二维材料的高质量大面积生长
- 批准号:
569921-2021 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
LTLS Freshwater Ecosystems ("LTLS-FE"): Analysis and future scenarios of Long-Term and Large-Scale freshwater quality and impacts
LTLS 淡水生态系统(“LTLS-FE”):长期和大规模淡水质量和影响的分析和未来情景
- 批准号:
NE/X015866/1 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Measuring and Understanding Diagnostic Quality from Large-Scale Data
测量和理解大规模数据的诊断质量
- 批准号:
10668219 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别: