Study on complex spherical codes and designs

复杂球形代码和设计的研究

基本信息

项目摘要

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equiangular tight frameに関するある予想について
关于等角紧框架的某些预测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    善本潔;須田庄
  • 通讯作者:
    須田庄
Complex Spherical Designs and Codes
  • DOI:
    10.1002/jcd.21379
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Aidan Roy;Sho Suda
  • 通讯作者:
    Aidan Roy;Sho Suda
Balancedly splittable orthogonal designs and equiangular tight frames
平衡可分割的正交设计和等角紧框架
  • DOI:
    10.1007/s10623-021-00897-1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kharaghani Hadi;Pender Thomas;Suda Sho
  • 通讯作者:
    Suda Sho
直交数独方陣グラフの固有値
正交数独方形图的特征值
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    須田庄
  • 通讯作者:
    須田庄
IPM(イラン)
IPM(伊朗)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suda Sho其他文献

双対テンソル圏の中山関手の公式
对偶张量范畴的 Nakayama 函子公式
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    東谷章弘;上山健太;Suda Sho;清水健一
  • 通讯作者:
    清水健一
On a class of quaternary complex Hadamard matrices
关于一类四元复Hadamard矩阵
  • DOI:
    10.1016/j.disc.2017.09.009
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fender Kai;Kharaghani Hadi;Suda Sho
  • 通讯作者:
    Suda Sho
Complex Spherical Codes with Three Inner Products
具有三个内积的复球码
  • DOI:
    10.1007/s00454-018-0017-x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Nozaki Hiroshi;Suda Sho
  • 通讯作者:
    Suda Sho
正則グラフ上の non-backtracking cycle の個数に関する中心極限定理
关于正则图上非回溯循环数量的中心极限定理
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kharaghani Hadi;Suda Sho;Zaitsev Vlad;齋藤正顕
  • 通讯作者:
    齋藤正顕
A central limit theorem for the number of non-backtracking cycles on regular graphs
正则图上非回溯循环数的中心极限定理
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kharaghani Hadi;Suda Sho;Zaitsev Vlad;齋藤正顕;篠原雅史;齋藤正顕
  • 通讯作者:
    齋藤正顕

Suda Sho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suda Sho', 18)}}的其他基金

Study on Hadamard matrices based on algebraic combinatorics
基于代数组合学的Hadamard矩阵研究
  • 批准号:
    15K21075
  • 财政年份:
    2015
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似国自然基金

古巴国典型纹饰符号的AR技术转化与智能文旅产品设计
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智绘山城:“一带一路”背景下重庆视觉符号的AI生成与传播研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
重庆公共设施的文化符号与区域形象国际化设计路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
音乐符号学视域下构建人民军队国际形象多模态表达研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
乡村文化符号在农产品直播中的呈现与社会临场感强化机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向垂直领域的“神经-符号” 多模协同智能体关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向去中心化应用的符号执行关键技术 研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向医学影像诊断的神经-符号混合学习与动态信任评估机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
应用于5G符号功率跟踪射频功放系统的 电源调制芯片的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
高速移动无线通信多载波调制技术
  • 批准号:
    Z25F010027
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

組合せ論的符号理論の展開
组合编码理论的发展
  • 批准号:
    23H01087
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
代数的符号理論の総合的研究
代数编码理论综合研究
  • 批准号:
    19H01802
  • 财政年份:
    2019
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Design Intellect focusing of the Semantic Structure and Practical Roles of Symbol Operation in Design Thought
设计思维研究关注语义结构和符号操作在设计思维中的实际作用
  • 批准号:
    16H03014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Influence standardization activities on corporate value creation
影响标准化活动对企业价值创造
  • 批准号:
    15K03718
  • 财政年份:
    2015
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
組合せデザインの代数・幾何構造と最適組合せ符号への応用
组合设计的代数/几何结构及其在最佳组合代码中的应用
  • 批准号:
    14J11700
  • 财政年份:
    2014
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
デザイン理論を用いた符号・格子及び頂点作用素代数の研究
使用设计理论研究码、格和顶点算子代数
  • 批准号:
    11J04742
  • 财政年份:
    2011
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
直交群上のデザインと符号の理論
正交群的设计与编码理论
  • 批准号:
    10J07149
  • 财政年份:
    2010
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
量子ジャンプによる誤りを考慮した量子符号の組合せ論的構成法
考虑量子跳跃误差的量子码组合构造方法
  • 批准号:
    20654012
  • 财政年份:
    2008
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
代数的符号理論における符号の一般化重みとその応用に関する研究
广义码权研究及其在代数码理论中的应用
  • 批准号:
    17740065
  • 财政年份:
    2005
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
代数的符号理論と組合せデザインの研究
代数编码理论与组合设计研究
  • 批准号:
    17740045
  • 财政年份:
    2005
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了