Computational methods for image processing understanding and recognition

图像处理理解和识别的计算方法

基本信息

  • 批准号:
    9265-2010
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

In today's world there is an increasing demand for digital image processing and understanding for the purpose of automation of information systems such as extraction, classification, search, and retrieval. In the sub-discipline of digital document processing, the amount of paper documents that must be processed by human in many organizations both commercial and governmental offices for archival purposes is huge and growing every day. There is an urgent need for automation of this process. For clean printed documents, the problem could be considered as already solved at least in theory. However, the difficulty is in dealing with unstructured, unconstrained handwritten documents that could be subjected to degradation over time or noise and artifacts due to the scanning process. Thus, the research on document image processing and understanding spans a wide range of sub-disciplines of computer science including image processing, pattern recognition, natural language processing, machine learning, database systems, and information retrieval. The objective of this research is to study the general problem of computational methods for digital image processing and understanding. This includes digital document processing as a major component as well as medical imaging, biometrics, and related topics. New generation of techniques for computational image processing should combine new development in image modeling with intelligent approaches based on human vision principle, learning based methods, and pattern recognition techniques to develop intelligent tools. Recently, computational intelligence techniques such as neural networks or evolutionary algorithms have been employed in various applications in the area of medical imaging. Approaches based on computational intelligence have been shown to be advantageous compared to classical approaches. Examples where this research would be useful are in document image processing, medical imaging, security, and biometric applications.
在当今世界,为了信息系统的自动化,例如提取、分类、搜索和检索,对数字图像处理和理解的需求日益增加。在数字文档处理的子学科中,在许多商业和政府办公室中必须由人类处理的用于存档目的的纸质文档的量是巨大的,并且每天都在增长。迫切需要实现这一过程的自动化。对于干净的打印文件,至少在理论上可以认为这个问题已经解决。然而,困难在于处理非结构化、无约束的手写文档,这些文档可能会随着时间的推移而退化,或者由于扫描过程而产生噪声和伪影。因此,对文档图像处理和理解的研究跨越了计算机科学的广泛子学科,包括图像处理、模式识别、自然语言处理、机器学习、数据库系统和信息检索。本研究的目的是研究数字图像处理和理解的计算方法的一般问题。这包括作为主要组成部分的数字文档处理,以及医学成像,生物识别和相关主题。新一代的计算图像处理技术应该将图像建模的新发展与基于人类视觉原理的智能方法、基于学习的方法和模式识别技术相结合,开发智能工具。近来,诸如神经网络或进化算法的计算智能技术已经被用于医学成像领域中的各种应用中。与经典方法相比,基于计算智能的方法已被证明是有利的。这项研究将是有用的例子是在文档图像处理,医学成像,安全和生物识别应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bui, Tien其他文献

Multilocus variable-number tandem-repeat analysis of clinical isolates of Aspergillus flavus from Iran reveals the first cases of Aspergillus minisclerotigenes associated with human infection
  • DOI:
    10.1186/1471-2334-14-358
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dehghan, Parvin;Bui, Tien;Carter, Dee A.
  • 通讯作者:
    Carter, Dee A.
Isolates of Cryptococcus neoformans from Infected Animals Reveal Genetic Exchange in Unisexual, α Mating Type Populations
  • DOI:
    10.1128/ec.00097-08
  • 发表时间:
    2008-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bui, Tien;Lin, Xiaorong;Carter, Dee
  • 通讯作者:
    Carter, Dee

Bui, Tien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bui, Tien', 18)}}的其他基金

Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
  • 批准号:
    RGPIN-2016-05467
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
  • 批准号:
    RGPIN-2016-05467
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
  • 批准号:
    RGPIN-2016-05467
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
  • 批准号:
    RGPIN-2016-05467
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
  • 批准号:
    RGPIN-2016-05467
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing, Pattern Recognition and Computer Vision
稀疏表示、低秩近似和字典学习在图像处理、模式识别和计算机视觉中的应用
  • 批准号:
    RGPIN-2016-05467
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Sparse Representation, Low Rank Approximation and Dictionary Learning to Image Processing and Pattern Recognition
稀疏表示、低秩逼近和字典学习在图像处理和模式识别中的应用
  • 批准号:
    RGPIN-2015-06254
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computational methods for image processing understanding and recognition
图像处理理解和识别的计算方法
  • 批准号:
    9265-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic Processing, Classification and Retrieval of Unconstrained Digital Documents
无约束数字文档的自动处理、分类和检索
  • 批准号:
    395169-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Computational methods for image processing understanding and recognition
图像处理理解和识别的计算方法
  • 批准号:
    9265-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Computational toolbox for spatial transcriptomic analysis of complex tissues
用于复杂组织空间转录组分析的计算工具箱
  • 批准号:
    10666294
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
  • 批准号:
    10643122
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
  • 批准号:
    10711312
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Computational Image Analysis of Renal Transplant Biopsies to Predict Graft Outcome
肾移植活检的计算图像分析以预测移植结果
  • 批准号:
    10733292
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
  • 批准号:
    10581283
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
  • 批准号:
    10644281
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Neural and computational mechanisms underlying robust object recognition
鲁棒物体识别背后的神经和计算机制
  • 批准号:
    10682285
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
  • 批准号:
    10568399
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了