Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
基本信息
- 批准号:RGPIN-2016-05983
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partial differential equations (PDEs) are among the most important objects of study in science and engineering. Solution of these equations would reveal the properties of the system under study. Very often, these equations express conservations of mass, energy and momenta. For instance, aircraft manufacturers are interested in designing wings of aircraft maximizing efficiency, performance and safety. The relevant PDEs are the conservation laws mentioned above for the unknown velocity and pressure fields. Unfortunately, explicit solutions of these equations are very rare. In general scientists and engineers rely on numerical methods to solve PDEs. In realistic 3D cases, there may be many millions of unknowns and equations. The most powerful computers are not able to solve these equations in reasonable time using classical methods.
Spectral methods are classical numerical methods to solve PDEs. If the PDE is time independent and the solution is smooth, then spectral methods converge exponentially, meaning that for the same order of accuracy, only thousands of unknowns are required compared to many millions of unknowns for other methods which don't converge exponentially. Hence spectral methods can obtain the solution much quicker compared to other methods. Unfortunately, if the PDE is time dependent, the classical spectral method does not converge exponentially. Space-time spectral methods are new methods which do converge exponentially and have appeared only within the past decade.
In the current Discovery cycle, I have proven exponential convergence of a space-time spectral method for the heat equation, a time dependent PDE of great significance which describes the temperature distribution of a body. Together with my students, the next step is to repeat for other standard linear PDEs occurring in science and engineering. After that, nonlinear equations can be considered. Another important aspect is to design fast solvers for the equations which arise in the space-time spectral method. Finally, the classical spectral method works only for rectangular geometry. For problems on complex geometry, the spectral element method, a generalization of the classical spectral discretization, can be considered.
Another topic to be explored involves numerical methods for fractional PDEs. Classical PDEs model local phenomena, while fractional PDEs are for systems exhibiting nonlocal behaviour. Fractional PDEs have been studied mostly in the past decade and have been one of the most active areas of mathematics. Numerical methods for fractional PDEs have only appeared in the past five years.
Very recently, I have performed a convergence analysis of a finite difference method for a 1D time independent fractional equation. Some of the aims of this program include extending the analysis to higher dimensions and time dependent problems, and designing modern fast solvers for the resultant equations.
偏微分方程(PDEs)是科学和工程领域最重要的研究对象之一。这些方程的解将揭示所研究系统的性质。通常,这些方程表示质量,能量和动量守恒。例如,飞机制造商对设计飞机机翼的效率、性能和安全性最大化很感兴趣。相关的偏微分方程为上述未知速度场和压力场的守恒定律。不幸的是,这些方程的显式解非常罕见。一般来说,科学家和工程师依靠数值方法来求解偏微分方程。在现实的3D情况下,可能有数百万个未知数和方程。即使是最强大的计算机也无法用经典方法在合理的时间内解出这些方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lui, ShiuHong(Shaun)其他文献
Lui, ShiuHong(Shaun)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lui, ShiuHong(Shaun)', 18)}}的其他基金
Space-time Spectral Methods for Differential equations
微分方程的时空谱方法
- 批准号:
RGPIN-2022-03665 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods for partial differential equations
偏微分方程的域分解方法
- 批准号:
250303-2011 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Transfer operator methods for modelling high-frequency wave fields - advancements through modern functional and numerical analysis
用于模拟高频波场的传递算子方法 - 现代函数和数值分析的进步
- 批准号:
EP/R012008/1 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for partial differential equations
偏微分方程的现代数值方法
- 批准号:
RGPIN-2016-05983 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Modern Numerical Matrix Methods for Network and Graph Computations
职业:网络和图计算的现代数值矩阵方法
- 批准号:
1149756 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Modern numerical methods for problems in physics
物理问题的现代数值方法
- 批准号:
203326-2007 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Modern numerical methods for problems in physics
物理问题的现代数值方法
- 批准号:
203326-2007 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




