Localized Patterns in PDEs: Theory, Computation, and Applications
偏微分方程中的局部模式:理论、计算和应用
基本信息
- 批准号:RGPIN-2017-03747
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Localized spatial-temporal patterns commonly occur for various classes of linear and nonlinear diffusive processes. In particular, they occur in reaction-diffusion (RD) systems modeling quorum-sensing (QS) behavior in biological systems, the initiation of root-hair tip formation in plant cells, and the spatial distribution of urban crime. Localization behavior also occurs in the biophysical context of calculating first passage statistics for a Brownian walker in a region with localized traps, and in ecology for calculating the persistence threshold of a species in a patchy landscape.
The long-term goal of my research program is to develop, within a unified framework, hybrid asymptotic-numerical methods to study such localization behavior in a wide variety of new PDE models of biological, chemical, and social interactions. The mathematical tools will include asymptotics, spectral analysis, PDE and bifurcation theory, and nonlinear dynamics, and our group will collaborate with a few numerical analysts.
The proposed new research consists of four overlapping themes:
I (Coupled Cell-Bulk Models): Develop and analyze new classes of coupled cell-bulk ODE-PDE models in which spatially segregated dynamically active signaling "cells'' or membranes are coupled through a bulk diffusion field. For one such model we have shown that the effect of bulk diffusion leads to stable and synchronous oscillations of the dynamically active units, which otherwise would not occur.
II (Patterns on Manifolds): Analyze localized spot patterns for RD systems on closed manifolds to determine how the geometry of the manifold influences the evolution, linear stability, and equilibria of such surface-bound patterns. We will also study new classes of RD models that result from the coupling of 3D bulk and 2D surface diffusion processes, due to chemical exchanges between the bulk and the surface.
III (Hybrid Methods): Spot dynamics for some RD systems are known to depend on the gradient of certain Green's functions, while their linear stability properties depend on related eigenvalue-dependent Green's functions. The implementation of fast multipole numerical methods for these Green's functions will allow for numerical realizations of spot dynamics in arbitrary planar domains, supporting investigations of how the bifurcation and stability properties of equilibria depend on the domain shape.
IV: (First Passage Problems) We will analyze two specific first-passage problems in biophysics. The first problem is to consider a Brownian walker that undergoes intermittent binding between a 3D bulk and its confining surface, before reaching a specific target site. The second problem is to derive effective Robin boundary conditions to calculate the mean first passage time (MFPT) involving a large number of surface traps. The need for such a careful homogenization analysis has been a long-standing problem in biophysics.
局部化的时空模式通常会出现在各类线性和非线性扩散过程中。特别是,它们发生在反应扩散(RD)系统建模群体感应(QS)的行为在生物系统中,在植物细胞中的根毛尖端形成的启动,和城市犯罪的空间分布。本地化行为也发生在生物物理的背景下计算第一次通过统计的布朗步行者在一个地区与本地化的陷阱,并在生态学计算的持久性阈值的物种在一个斑块景观。
我的研究计划的长期目标是开发,在一个统一的框架内,混合渐近数值方法来研究这样的本地化行为在各种各样的新的PDE模型的生物,化学和社会相互作用。数学工具将包括渐近,谱分析,偏微分方程和分叉理论,和非线性动力学,我们的小组将与一些数值分析师合作。
拟议的新研究包括四个重叠的主题:
I(耦合细胞-体模型):开发和分析耦合细胞-体ODE-PDE模型的新类别,其中空间分离的动态活性信号传导“细胞”或膜通过体扩散场耦合。对于一个这样的模型,我们已经表明,体扩散的影响,导致稳定和同步振荡的动态活跃的单位,否则不会发生。
II(流形上的模式):分析封闭流形上RD系统的局部斑点模式,以确定流形的几何形状如何影响这种表面约束模式的演变,线性稳定性和平衡。我们还将研究新的类的RD模型,导致从3D体和2D表面扩散过程的耦合,由于体和表面之间的化学交换。
III(混合方法):已知某些RD系统的点动力学依赖于某些绿色函数的梯度,而它们的线性稳定性特性依赖于相关的本征值依赖的绿色函数。这些绿色的功能的快速多极数值方法的实施将允许在任意平面域的点动态的数值实现,支持调查的分歧和平衡的稳定性如何取决于域的形状。
第四部分:(第一通道问题)我们将分析生物物理学中两个具体的第一通道问题。第一个问题是考虑布朗步行者,其在到达特定目标部位之前经历3D本体与其限制表面之间的间歇性结合。第二个问题是推导出有效的Robin边界条件,以计算涉及大量表面陷阱的平均首次通过时间(MFPT)。对这种仔细的均质化分析的需要一直是生物物理学中的一个长期存在的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ward, Michael其他文献
Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network.
- DOI:
10.1038/s41467-023-36699-3 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:16.6
- 作者:
Meller, Artur;Ward, Michael;Borowsky, Jonathan;Kshirsagar, Meghana;Lotthammer, Jeffrey M.;Oviedo, Felipe;Ferres, Juan Lavista;Bowman, Gregory R. - 通讯作者:
Bowman, Gregory R.
Using AHP and Spatial Analysis to Determine Water Surface Storage Suitability in Cambodia
- DOI:
10.3390/w13030367 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:3.4
- 作者:
Ward, Michael;Poleacovschi, Cristina;Perez, Michael - 通讯作者:
Perez, Michael
Population Characteristics of Cats Adopted from an Urban Cat Shelter and the Influence of Physical Traits and Reason for Surrender on Length of Stay
- DOI:
10.3390/ani9110940 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:3
- 作者:
Miller, Hannah;Ward, Michael;Beatty, Julia A. - 通讯作者:
Beatty, Julia A.
Modification of transcriptional factor ACE3 enhances protein production inTrichoderma reeseiin the absence of cellulase gene inducer
- DOI:
10.1186/s13068-020-01778-w - 发表时间:
2020-08-06 - 期刊:
- 影响因子:6.3
- 作者:
Luo, Yun;Valkonen, Mari;Ward, Michael - 通讯作者:
Ward, Michael
A Randomized Clinical Trial Comparing Contact Lens With Intraocular Lens Correction of Monocular Aphakia During Infancy Grating Acuity and Adverse Events at Age 1 Year
- DOI:
10.1001/archophthalmol.2010.101 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:0
- 作者:
Lambert, Scott R.;Buckley, Edward G.;Ward, Michael - 通讯作者:
Ward, Michael
Ward, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ward, Michael', 18)}}的其他基金
Localized Patterns in PDEs: Theory, Computation, and Applications
偏微分方程中的局部模式:理论、计算和应用
- 批准号:
RGPIN-2017-03747 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localized Patterns in PDEs: Theory, Computation, and Applications
偏微分方程中的局部模式:理论、计算和应用
- 批准号:
RGPIN-2017-03747 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localized Patterns in PDEs: Theory, Computation, and Applications
偏微分方程中的局部模式:理论、计算和应用
- 批准号:
RGPIN-2017-03747 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localized Patterns in PDEs: Theory, Computation, and Applications
偏微分方程中的局部模式:理论、计算和应用
- 批准号:
RGPIN-2017-03747 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localization, singular perturbations and reaction-diffusion systems
局域化、奇异扰动和反应扩散系统
- 批准号:
138421-2010 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localization, singular perturbations and reaction-diffusion systems
局域化、奇异扰动和反应扩散系统
- 批准号:
138421-2010 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localization, singular perturbations and reaction-diffusion systems
局域化、奇异扰动和反应扩散系统
- 批准号:
138421-2010 - 财政年份:2013
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localization, singular perturbations and reaction-diffusion systems
局域化、奇异扰动和反应扩散系统
- 批准号:
138421-2010 - 财政年份:2012
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localization, singular perturbations and reaction-diffusion systems
局域化、奇异扰动和反应扩散系统
- 批准号:
138421-2010 - 财政年份:2011
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Localization, singular perturbations and reaction-diffusion systems
局域化、奇异扰动和反应扩散系统
- 批准号:
138421-2010 - 财政年份:2010
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
- 批准号:
2328117 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Uncovering the evolutionary patterns of the Aculeata stinger
揭示 Aculeata 毒刺的进化模式
- 批准号:
24K18174 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
- 批准号:
2346471 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
- 批准号:
2328119 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
- 批准号:
2333917 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
AGS-PRF: Understanding Historical Trends in Tropical Pacific Sea Surface Temperature Patterns
AGS-PRF:了解热带太平洋海面温度模式的历史趋势
- 批准号:
2317224 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Fellowship Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Research Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
- 批准号:
2312302 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant