Predictive modelling of neuroimaging measures of language processing
语言处理的神经影像测量的预测模型
基本信息
- 批准号:RGPIN-2017-05340
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As neuroimaging research evolves, we are beginning to move from the study of average patterns of brain activity to understanding the sources of inter-individual variance. Over the past granting period my trainees and I have identified relationships between individual differences in neural signatures of lexical and grammatical processing (the N400 and P600, measured using EEG and MEG) and linguistic, cognitive, and demographic variables. Our findings indicate that scalp-recorded brain activity is much more sensitive to fine-grained individual differences than previously thoughtincluding factors such as socioeconomic status and reading habits. In a second, related theme of our work, we have begun to record brain activity from people engaged in free conversation (rather than more typical tasks such as during receptive language processing, or simple, controlled production of single words). Having validated this approach, we are poised to enter a new era of neuroimaging research that holds great promise both in terms of studying language under more naturalistic conditions, and developing a database (corpus) containing both natural language data and associated brain activity. This work has necessitated the development and application of novel statistical approaches to analyzing complex, 4-dimensional neuroimaging data and relating it to a large number of predictive variables, including machine learning techniques.
The overarching goal of our work in the next granting period will be to develop predictive models of neural responses during language processing, that allow us to accurately predict brain activity patterns based on a combination of objective linguistic, cognitive, and demographic measures, and preceding language context. Thus rather than assuming everyone will respond with the same pattern of brain activity, we attempt to model and therefore understand the factors that drive individual differences around the average pattern of activity. This holds the promise of a much richer understanding of how language is proceed in the brain, and ultimately insights that will guide individualized training (e.g., second language learning) and therapy (e.g., speech-language therapy) through our industrially-partnered R&D efforts.
随着神经影像学研究的发展,我们开始从研究大脑活动的平均模式转向理解个体间差异的来源。在过去的授权期间,我和我的学员已经确定了词汇和语法处理的神经特征(N400和P600,使用脑电图和脑磁图测量)与语言、认知和人口变量之间的个体差异之间的关系。我们的研究结果表明,头皮记录的大脑活动对细微的个体差异比之前认为的要敏感得多,包括社会经济地位和阅读习惯等因素。在我们工作的第二个相关主题中,我们已经开始记录人们参与自由对话的大脑活动(而不是更典型的任务,如接受性语言处理,或简单的、受控的单个单词的产生)。在验证了这种方法之后,我们准备进入一个神经成像研究的新时代,在更自然的条件下研究语言,以及开发包含自然语言数据和相关大脑活动的数据库(语料库)方面都有很大的希望。这项工作需要开发和应用新的统计方法来分析复杂的四维神经成像数据,并将其与大量预测变量(包括机器学习技术)联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Newman, Aaron其他文献
The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma.
- DOI:
10.1016/j.ccell.2021.08.011 - 发表时间:
2021-10-11 - 期刊:
- 影响因子:50.3
- 作者:
Steen, Chloe;Luca, Bogdan;Esfahani, Mohammad;Azizi, Armon;Sworder, Brian;Nabet, Barzin;Kurtz, David;Liu, Chih;Khameneh, Farnaz;Advani, Ranjana;Natkunam, Yasodha;Myklebust, June;Diehn, Maximilian;Gentles, Andrew;Newman, Aaron;Alizadeh, Ash - 通讯作者:
Alizadeh, Ash
The influence of breastfeeding on cortical and bio-behavioural indicators of procedural pain in newborns: Findings of a randomized controlled trial
- DOI:
10.1016/j.earlhumdev.2021.105308 - 发表时间:
2021-01-26 - 期刊:
- 影响因子:2.5
- 作者:
Benoit, Britney;Newman, Aaron;Campbell-Yeo, Marsha - 通讯作者:
Campbell-Yeo, Marsha
Newman, Aaron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Newman, Aaron', 18)}}的其他基金
Predictive modelling of neuroimaging measures of language processing
语言处理的神经影像测量的预测模型
- 批准号:
RGPIN-2017-05340 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Predictive modelling of neuroimaging measures of language processing
语言处理的神经影像测量的预测模型
- 批准号:
RGPIN-2017-05340 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Video games and second language acquisition
视频游戏和第二语言习得
- 批准号:
486618-2015 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Predictive modelling of neuroimaging measures of language processing
语言处理的神经影像测量的预测模型
- 批准号:
RGPIN-2017-05340 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Video games and second language acquisition
视频游戏和第二语言习得
- 批准号:
486618-2015 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Building Better Readers: Characterizing the Neurological Effects of the SpellRead Reading Intervention Program
培养更好的阅读能力:表征 SpellRead 阅读干预计划的神经学影响
- 批准号:
514942-2017 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Predictive modelling of neuroimaging measures of language processing
语言处理的神经影像测量的预测模型
- 批准号:
RGPIN-2017-05340 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE RADIANT: Rehabilitative and Diagnostic Innovation in Applied Neuro Technologies
NSERC CREATE RADIANT:应用神经技术的康复和诊断创新
- 批准号:
397994-2011 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Training Experience
Neuroplasticity of Language Networks
语言网络的神经可塑性
- 批准号:
327540-2012 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE RADIANT: Rehabilitative and Diagnostic Innovation in Applied Neuro Technologies
NSERC CREATE RADIANT:应用神经技术的康复和诊断创新
- 批准号:
397994-2011 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Training Experience
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mapping heterogeneity of brain microstructural abnormalities in psychiatric disorders with normative modelling
通过规范模型绘制精神疾病中大脑微结构异常的异质性
- 批准号:
10658680 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Individualized Functional Targets for Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder: Does Targeting sgACC-DLPFC Connectivity Lead to Better Outcomes?
经颅磁刺激治疗重度抑郁症的个体化功能目标:以 sgACC-DLPFC 连接为目标是否会带来更好的结果?
- 批准号:
474509 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Studentship Programs
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Regulating post-traumatic stress disorder neural networks: A real-time fMRI neurofeedback mechanistic study in frontline healthcare workers
调节创伤后应激障碍神经网络:针对一线医护人员的实时功能磁共振成像神经反馈机制研究
- 批准号:
465300 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Operating Grants
Novel electric-field modelling approach to quantify changes in resting state functional connectivity following theta burst stimulation
新颖的电场建模方法可量化 θ 爆发刺激后静息态功能连接的变化
- 批准号:
10686090 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Predictive modelling of neuroimaging measures of language processing
语言处理的神经影像测量的预测模型
- 批准号:
RGPIN-2017-05340 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Relating the development of microscopic hippocampal pathways to concept learning: Complementary neural network and white matter investigations
将微观海马通路的发展与概念学习联系起来:补充神经网络和白质研究
- 批准号:
445355 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Operating Grants
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Integrating Personalized Brain Simulation, Machine Learning, and Multimodal Neuroimaging for Early Detection of Alzheimer's Disease: A New Data-Driven Methodological Framework
整合个性化大脑模拟、机器学习和多模态神经影像以早期检测阿尔茨海默病:一种新的数据驱动方法框架
- 批准号:
412543 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Fellowship Programs