Modular varieties, generalized Fermat equations, and special functions

模簇、广义费马方程和特殊函数

基本信息

  • 批准号:
    RGPIN-2017-03892
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Number theory, which is motivated by the study of numbers and equations, has existed since the dawn of recorded history. Perhaps because of its fundamental role in mathematics, number theory continues to be an active area of research, with a wide applicability and relevance to applications. This research program aims to study and answer some fundamental open questions in number theory concerning a natural class of diophantine equations known as modular varieties, with a view towards developing stronger methods for tackling the Fermat-Catalan conjecture, a natural generalization of Fermat's Last Theorem. The approach is fundamental science and problem motivated but will also involve the development of new methods and theory in the areas of Galois representations, modular symbols, and Frey abelian variety constructions. In terms of relevance to applications, the proposed research enhances our foundational knowledge concerning elliptic and hyperelliptic curves, number and function fields, as well as explicit aspects of representation theory. The expertise gained from the fundamental science component of this proposal will also be used to study the application motivated problem of homomorphic encryption and its resistance to quantum algorithms, which is relevant to maintaining privacy in big data applications.
数论,这是由研究数字和方程的动机,已经存在,因为有记录的历史黎明。也许是因为它在数学中的基本作用,数论仍然是一个活跃的研究领域,具有广泛的适用性和应用相关性。 该研究计划旨在研究和回答数论中关于自然类丢番图方程(称为模变种)的一些基本开放问题,以期开发更强大的方法来解决费马-加泰罗尼亚猜想,费马大定理的自然推广。 该方法是基础科学和问题的动机,但也将涉及新的方法和理论在伽罗瓦表示,模块化符号和弗雷阿贝尔品种建设领域的发展。 在相关的应用程序,拟议的研究增强了我们的基础知识,椭圆和超椭圆曲线,数和功能领域,以及明确的方面表示理论。 从该提案的基础科学部分获得的专业知识也将用于研究同态加密的应用驱动问题及其对量子算法的抵抗力,这与在大数据应用中维护隐私有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Imin其他文献

Chen, Imin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Imin', 18)}}的其他基金

Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties and diophantine problems
模块品种和丢番图问题
  • 批准号:
    227250-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties and diophantine problems
模块品种和丢番图问题
  • 批准号:
    227250-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties and diophantine problems
模块品种和丢番图问题
  • 批准号:
    227250-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties and diophantine problems
模块品种和丢番图问题
  • 批准号:
    227250-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties and diophantine problems
模块品种和丢番图问题
  • 批准号:
    227250-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2246941
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100791
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Structure of algebraic varieties and generalized Jacobian conjecture
代数簇的结构和广义雅可比猜想
  • 批准号:
    20K03525
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了