Shape-transforming Mechanical Metamaterials
变形机械超材料
基本信息
- 批准号:RGPIN-2017-04641
- 负责人:
- 金额:$ 4.81万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Can a rigid objet wrap around a ball without bending and stretching? Can a flat sheet be transformed into a three-dimensional device that can take any force applied to it? And can this 3D shape be reversibly ironed back to the original sheet without damage? In current materials, we find no answer. In contrast, products that can stretch and fold, pack and unpack, as well as change drastically volume and shape are sought in a manifold of applications. Deployable solar panels, for example, are just one of them, but many others exist across disciplines and length scale, all chasing the Holy Grail of material science and engineering: “materials that can shape-transform to work in diverse configurations”.
The vision of this research program is to introduce the next generation of materials, extremely innovative because capable to shape transform themselves and do what current ones cannot. Three complementary tracks, propelled through a combined approach of theory, simulations and experiments on fabricated proof-of-concept prototypes, will unfold in the next five years to generate first-class shape transforming materials. The distinctive trait is their architecture, which stands out as patterns of slits and pores. The unified motif of this program is that by rationally designing their geometry, tessellation and overall architecture, we will elicit unprecedented functionalities in monolithic materials, enabling them to dynamically transform their shape, and properly tune their function to adapt to the environment. These capabilities will fill unmet demands currently existing in the Canadian industry producing energy storage systems, smart windows, stretchable electronics and flexible display screens, wearable devices, furniture assembly, and miniaturized optics for sensing and imaging.
The empowering force that will drive this program to innovation is a well-defined plan with complementary and interrelated tracks carried out by a pool of students joining forces cohesively in the next five years. Upon graduation, these students will have received cutting-edge know-how in multiscale mechanics, geometry tailoring, and structural optimization of architected materials, along with the relevant means to fabricate and test them. This is a blend of expertise that it is highly sought in the Canadian industry currently looking to solve long-standing problems of superflexibility, packing and reconfigurability, unmatched functionalities chased across discipline. The HQP trained in this program will pave the way to and ultimately usher in a new era of material innovation that will contribute to propel the formation of Canadian companies, with new jobs and economic profits for Canada.
一个刚性的物体可以不弯曲和拉伸地缠绕在一个球上吗?一张平板能变成一个能承受任何力的三维装置吗?这种3D形状可以可逆地熨烫回原始板材而不会损坏吗?在目前的材料中,我们找不到答案。相比之下,在多种应用中寻求可以拉伸和折叠、包装和打开以及急剧改变体积和形状的产品。例如,可部署的太阳能电池板只是其中之一,但其他许多跨学科和长度规模存在,都在追逐材料科学和工程的圣杯:“可以变形以在不同配置中工作的材料”。
该研究计划的愿景是引入下一代材料,这些材料极具创新性,因为它们能够塑造自己,并完成当前材料无法做到的事情。三个互补的轨道,通过理论,模拟和实验相结合的方法对制造的概念验证原型的推动,将在未来五年内展开,以产生一流的形状转换材料。其独特的特征是它们的建筑,突出的裂缝和毛孔的模式。该计划的统一主题是,通过合理设计它们的几何形状,镶嵌和整体架构,我们将在整体材料中获得前所未有的功能,使它们能够动态地改变它们的形状,并适当地调整它们的功能以适应环境。这些能力将满足加拿大工业目前尚未满足的需求,包括生产储能系统、智能窗户、可拉伸电子产品和柔性显示屏、可穿戴设备、家具组装以及用于传感和成像的微型光学器件。
将推动该计划创新的授权力量是一个明确的计划,由一群学生在未来五年内团结一致地进行互补和相互关联的轨道。毕业后,这些学生将获得多尺度力学,几何剪裁和建筑材料的结构优化方面的尖端技术,沿着相关的制造和测试方法。这是一个混合的专业知识,它是高度寻求在加拿大行业目前正在寻求解决长期存在的问题,超灵活性,包装和可重构性,无与伦比的功能追逐跨学科。在该计划中培训的HQP将为材料创新的新时代铺平道路并最终迎来新时代,这将有助于推动加拿大公司的形成,为加拿大带来新的就业机会和经济利润。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pasini, Damiano其他文献
The Impact of Tissue Morphology, Cross-Section and Turgor Pressure on the Mechanical Properties of the Leaf Petiole in Plants
- DOI:
10.1016/s1672-6529(09)60212-2 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:4
- 作者:
Faisal, Tanvir Rahman;Abad, Ehsan M. Khalil;Pasini, Damiano - 通讯作者:
Pasini, Damiano
Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
- DOI:
10.1016/j.jmps.2018.04.012 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:5.3
- 作者:
Xu, Hang;Farag, Amr;Pasini, Damiano - 通讯作者:
Pasini, Damiano
Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla
- DOI:
10.1098/rsif.2019.0454 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:3.9
- 作者:
Brule, Veronique;Rafsanjani, Ahmad;Pasini, Damiano - 通讯作者:
Pasini, Damiano
Material anisotropy and elasticity of cortical and trabecular bone in the adult mouse femur via AFM indentation
- DOI:
10.1016/j.jmbbm.2019.01.024 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:3.9
- 作者:
Asgari, Meisam;Abi-Rafeh, Jad;Pasini, Damiano - 通讯作者:
Pasini, Damiano
A Multiscale Mechanical Model for Plant Tissue Stiffness
- DOI:
10.3390/polym5020730 - 发表时间:
2013-06-01 - 期刊:
- 影响因子:5
- 作者:
Faisal, Tanvir R.;Rey, Alejandro D.;Pasini, Damiano - 通讯作者:
Pasini, Damiano
Pasini, Damiano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pasini, Damiano', 18)}}的其他基金
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
RGPIN-2017-04641 - 财政年份:2021
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Individual
Reconfigurable Mechanical Metamaterials
可重构机械超材料
- 批准号:
CRC-2020-00080 - 财政年份:2021
- 资助金额:
$ 4.81万 - 项目类别:
Canada Research Chairs
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
RGPIN-2017-04641 - 财政年份:2019
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
507986-2017 - 财政年份:2019
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
507986-2017 - 财政年份:2018
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
RGPIN-2017-04641 - 财政年份:2018
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
RGPIN-2017-04641 - 财政年份:2017
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Individual
Multi-objective Optimization of Patterned Void Structures
图案化空隙结构的多目标优化
- 批准号:
472149-2014 - 财政年份:2017
- 资助金额:
$ 4.81万 - 项目类别:
Collaborative Research and Development Grants
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
507986-2017 - 财政年份:2017
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
CD4+CD25+调节性T细胞对肿瘤干细胞的影响及其调控机制研究
- 批准号:81171983
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
尾加压素II在心房纤维化中的作用及机制
- 批准号:81000052
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
常山酮增强肺癌放疗效果同时预防放射性肺损伤的分子机制研究
- 批准号:30970864
- 批准年份:2009
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Differential changes in energy metabolism in response to mechanical tension give rise to human scaring heterogeneity
响应机械张力的能量代谢的差异变化导致人类恐惧异质性
- 批准号:
10660416 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Targeting T2 inflammation-evoked mechanical endotypes of ASM shortening in asthma
靶向哮喘中 ASM 缩短的 T2 炎症诱发机械内型
- 批准号:
10657988 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Mechanical programming to enhance the immunosuppressive function of mesenchymal stem cells for the treatment of graft-versus-host disease.
机械编程增强间充质干细胞的免疫抑制功能,用于治疗移植物抗宿主病。
- 批准号:
10905160 - 财政年份:2023
- 资助金额:
$ 4.81万 - 项目类别:
Modeling pulmonary fibrosis progression caused by differential mechanical stretch
模拟差异机械拉伸引起的肺纤维化进展
- 批准号:
10677845 - 财政年份:2022
- 资助金额:
$ 4.81万 - 项目类别:
CAREER: Understanding the Origins of Mechanical Hysteresis and Functional Fatigue in Martensitic Phase Transforming Materials
职业:了解马氏体相变材料中机械滞后和功能疲劳的起源
- 批准号:
2142302 - 财政年份:2022
- 资助金额:
$ 4.81万 - 项目类别:
Standard Grant
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
RGPIN-2017-04641 - 财政年份:2021
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Individual
The role of notochord derived signaling, mechanical force generation and AF derived Tgfβ signaling on intervertebral disc formation
脊索衍生信号、机械力产生和 AF 衍生 Tgfβ 信号对椎间盘形成的作用
- 批准号:
10414098 - 财政年份:2020
- 资助金额:
$ 4.81万 - 项目类别:
The role of notochord derived signaling, mechanical force generation and AF derived Tgfβ signaling on intervertebral disc formation
脊索衍生信号、机械力产生和 AF 衍生 Tgfβ 信号对椎间盘形成的作用
- 批准号:
10264801 - 财政年份:2020
- 资助金额:
$ 4.81万 - 项目类别:
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
RGPIN-2017-04641 - 财政年份:2019
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Individual
Shape-transforming Mechanical Metamaterials
变形机械超材料
- 批准号:
507986-2017 - 财政年份:2019
- 资助金额:
$ 4.81万 - 项目类别:
Discovery Grants Program - Accelerator Supplements