Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
基本信息
- 批准号:RGPIN-2017-06275
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1925 our view of the physical world drastically changed with the advent of Heisenberg's matrix mechanics. He showed that we may accurately describe quantum phenomena by interpreting time dependent variables as non-commuting matrices rather than functions. This "quantization" of functions, which underlies the theoretical development of quantum mechanics, has motivated mathematicians to quantize other areas of mathematics, including functional analysis, harmonic analysis, and information theory. The resulting areas: operator spaces, topological quantum groups, and quantum information theory, are, to this day, prominent world-wide research areas at the forefront of modern analysis and mathematical physics. They have all been shown to have a profound structure theory, and deep mathematical connections between them continue to emerge. My research program lies at the confluence of these three areas.
An area where the above fields interact in a fruitful manner is the current rapid development of harmonic analysis on quantum groups. The operator spaces of interest in this theory carry a natural module structure over a non-commutative algebra, and, in fact, the corresponding operator module structure is fundamental to the theory. Analogous to the quantization of functional analysis to the analytical theory of operator spaces, the main long-term vision of my research program is the development of the analytical theory of operator modules and their applications to non-commutative harmonic analysis. This development will create an entirely new facet of modern functional analysis with promising applications to quantum group theory, including the potential resolution of several important open problems. The original techniques outlined in the proposal have already had a significant impact on quantum group theory, and their development will continue to furnish the theory with novel tools for its evolution.
Another long-term goal of the proposed research is the development of new applications of operator spaces and harmonic analysis to quantum information. These areas have already provided valuable tools for quantum information theory, and it is of great interest to explore further connections between them. In particular, we aim at exploring a recent connection between non-commutative harmonic analysis and the fundamental structure of quantum entanglement, which is intimately related to one of the biggest open problems in operator algebras.
The interdisciplinary research in this proposal, together with my interdisciplinary background, provide excellent training opportunities for HQP at all levels. Such an interdisciplinary approach fosters the rapid mathematical maturity of HQP as well as the development of versatile skills, techniques and perspectives, which provide them with exceptional preparation for future endeavors within several interacting research areas.
1925年,随着海森堡矩阵力学的出现,我们对物理世界的看法发生了巨大的变化。他表明,我们可以通过将时间相关变量解释为非交换矩阵而不是函数来准确地描述量子现象。这种函数的“量子化”是量子力学理论发展的基础,它激励数学家将数学的其他领域量子化,包括泛函分析、谐波分析和信息论。由此产生的领域:算子空间、拓扑量子群和量子信息论,至今仍是现代分析和数学物理前沿的突出的全球研究领域。它们都被证明具有深刻的结构理论,它们之间深刻的数学联系不断出现。我的研究项目就在这三个领域的交汇处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crann, Jason其他文献
Crann, Jason的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crann, Jason', 18)}}的其他基金
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Harmonic Analysis and Quantum Information Theory
非交换调和分析与量子信息论
- 批准号:
410205-2011 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Noncommutative Harmonic Analysis and Quantum Information Theory
非交换调和分析与量子信息论
- 批准号:
410205-2011 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Noncommutative Harmonic Analysis and Quantum Information Theory
非交换调和分析与量子信息论
- 批准号:
410205-2011 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The effect of demyelination on the propagation of nerve impulses
脱髓鞘对神经冲动传播的影响
- 批准号:
376726-2009 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Mathematics in quantum information
量子信息中的数学
- 批准号:
384948-2009 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
University Undergraduate Student Research Awards
相似海外基金
Education DCL: EAGER: Experiential Learning Platform and Curricular Modules for Quantum Computing Security and Privacy Education
教育 DCL:EAGER:量子计算安全和隐私教育的体验式学习平台和课程模块
- 批准号:
2335788 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
- 批准号:
2215998 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Classifying Higher Quantum Airy Structures As Modules of W(gln)-Algebras
将更高量子艾里结构分类为 W(gln)-代数的模块
- 批准号:
565351-2021 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Weight modules and crystal bases for quantum symmetric pairs
量子对称对的重量模块和晶体底座
- 批准号:
20K14286 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Study of the category of modules over the quantum affine algebras
量子仿射代数模范畴的研究
- 批准号:
18J10669 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
- 批准号:
RGPIN-2017-06275 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual