Computer-Aided Nonsmooth Analysis and Applications

计算机辅助非光滑分析及应用

基本信息

  • 批准号:
    RGPIN-2018-03928
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Our society would greatly benefit from a wider use of optimization thereby achieving better results with fewer resources. Spreading the use of optimization techniques while improving their efficiency and, at the same time, deepening our understanding of those techniques, is an ongoing task that is expected to generate huge economic and social benefits. An exponential increase in data collection and computational power allow us to routinely optimize our time (Google map computes the fastest road using real-time traffic information), our survival (the best cancer treatment takes into account individual patient history), and our costs (road costs are minimized using remote sensing ground survey collected by air). Optimization algorithms used to solve these problems are rarely able to guarantee that the best solution was found. My research program aims to improve our understanding of the core optimization techniques by developing efficient algorithms to manipulate mathematical objects in real time. Those algorithms will support a real-time interactive visualization environment that exploits the latest advances in virtual reality technology. The understanding and knowledge obtained through such interactive visualization tools will help training HQP in optimization. In the long term, the new algorithms will help developing better global optimization algorithms to provide guarantees of optimality for a larger number of optimization problems. While the core of the proposed research focuses on new algorithms for low dimensional functions, incorporating those techniques into deterministic global optimization algorithms will also be researched. One objective is to propose new strategies that will make an improvement of several order of magnitude in computation time and quality of the solution. Another objective is to provide some guarantee of global optimality for nonconvex difficult optimization problems by using approximation and dimension reduction techniques coupled with explicit computation of convex analysis transforms. Transforms like the Moreau envelope and the Legendre-Fenchel conjugate play fundamental roles in optimization; being able to compute them efficiently or at least approximate them has led to many improvements. Two important techniques, storing the complete graph of the function to be optimized and exploiting problem structures, have already been used to great success. The plan is to further develop their use by leveraging new algorithms that compute entire graph of functions instead of performing pointwise evaluations. HQP interested in software development will be trained on optimization techniques, software engineering, and scientific computing; while HQP with more mathematical interests will learn about nonsmooth analysis, algorithm performance, and floating point computation.
我们的社会将大大受益于更广泛地使用优化,从而用更少的资源取得更好的结果。在提高效率的同时推广优化技术的使用,同时加深我们对这些技术的理解,是一项预计将产生巨大经济和社会效益的持续任务。数据收集和计算能力的指数级增长使我们能够例行公事地优化我们的时间(谷歌地图使用实时交通信息计算最快的道路)、我们的生存(最好的癌症治疗考虑到单个患者的病史)和我们的成本(使用航空收集的遥感地面调查将道路成本降至最低)。用来解决这些问题的优化算法很少能保证找到最优解。我的研究计划旨在通过开发实时操作数学对象的高效算法来提高我们对核心优化技术的理解。这些算法将支持利用虚拟现实技术的最新进展的实时交互式可视化环境。通过这种交互式可视化工具获得的理解和知识将有助于培训HQP进行优化。从长远来看,新算法将有助于开发更好的全局优化算法,为更多的优化问题提供最优性保证。 虽然所提出的研究的核心是低维函数的新算法,但将这些技术结合到确定性全局优化算法中也将被研究。一个目标是提出新的策略,使计算时间和解的质量提高几个数量级。另一个目标是利用逼近和降维技术,结合显式的凸分析变换计算,为非凸困难优化问题提供全局最优性的保证。像莫罗包络和勒让德-芬切尔共轭这样的变换在优化中扮演着基本的角色;能够有效地计算它们,或者至少是近似它们,已经带来了许多改进。存储待优化函数的完整图和开发问题结构这两项重要技术已经获得了巨大的成功。我们的计划是通过利用计算整个函数图的新算法来进一步开发它们的用途,而不是执行逐点评估。对软件开发感兴趣的HQP将接受优化技术、软件工程和科学计算方面的培训;而对数学更感兴趣的HQP将学习非光滑分析、算法性能和浮点计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucet, Yves其他文献

Best practices for comparing optimization algorithms
  • DOI:
    10.1007/s11081-017-9366-1
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Beiranvand, Vahid;Hare, Warren;Lucet, Yves
  • 通讯作者:
    Lucet, Yves
New sequential exact Euclidean distance transform algorithms based on convex analysis
  • DOI:
    10.1016/j.imavis.2006.10.011
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Lucet, Yves
  • 通讯作者:
    Lucet, Yves

Lucet, Yves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucet, Yves', 18)}}的其他基金

Computer-Aided Nonsmooth Analysis and Applications
计算机辅助非光滑分析及应用
  • 批准号:
    RGPIN-2018-03928
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Computer-Aided Nonsmooth Analysis and Applications
计算机辅助非光滑分析及应用
  • 批准号:
    RGPIN-2018-03928
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Estimating oil and gas well life cycle using machine learning
使用机器学习估计油气井生命周期
  • 批准号:
    567562-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Alliance Grants
Advanced optimization methods for road construction
道路建设先进优化方法
  • 批准号:
    479316-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced optimization methods for road construction
道路建设先进优化方法
  • 批准号:
    479316-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Computer-Aided Nonsmooth Analysis and Applications
计算机辅助非光滑分析及应用
  • 批准号:
    RGPIN-2018-03928
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced optimization methods for road construction
道路建设先进优化方法
  • 批准号:
    479316-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Computer-Aided Nonsmooth Analysis and Applications
计算机辅助非光滑分析及应用
  • 批准号:
    RGPIN-2018-03928
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Data science collaborative research & development workshop
数据科学合作研究
  • 批准号:
    508581-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Connect Grants Level 2
Advanced optimization methods for road construction
道路建设先进优化方法
  • 批准号:
    479316-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Catalyst aided regeneration of nonaqueous absorbent for low temperature CO2 capture
用于低温二氧化碳捕获的非水吸收剂的催化剂辅助再生
  • 批准号:
    EP/Y026527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Fellowship
CAREER: SmartCAD: Shaping The Next Revolution in Computer-Aided Design
职业生涯:SmartCAD:塑造计算机辅助设计的下一场革命
  • 批准号:
    2339249
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Conference: 10th International Conference on Foundations of Computer Aided Process Design (FOCAPD-2024): Designing for the Future Digital and Carbon Neutral Economy
会议:第十届计算机辅助过程设计基础国际会议(FOCAPD-2024):为未来数字和碳中和经济设计
  • 批准号:
    2413592
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
SBIR Phase II: Computer Aided Design Toolkit for Desktop Digital Fabrication of Circuits on Paper
SBIR 第二阶段:用于纸上电路桌面数字制造的计算机辅助设计工具包
  • 批准号:
    2233004
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Cooperative Agreement
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
Computer-aided design and development of isoform selective inhibitors of Casein Kinase 1
酪蛋白激酶 1 异构体选择性抑制剂的计算机辅助设计和开发
  • 批准号:
    10629703
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
Every Datapoint Counts: Atmosphere-aided Flare Studies in the Rubin era
每个数据点都很重要:鲁宾时代的大气辅助耀斑研究
  • 批准号:
    2308016
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Artificial Intelligence(AI)-Aided Photon Counting Detection in Optical Wireless Communications
光无线通信中的人工智能 (AI) 辅助光子计数检测
  • 批准号:
    23K13332
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了