Arithmetic Algebraic Geometry

算术代数几何

基本信息

  • 批准号:
    RGPIN-2018-06094
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

We will study several problems related to algebraic cycles and Abelian varieties, L-functions and mathematics arising from Information Technology. 1) In the arithmetic and geometry of Abelian varieties, conjectures about algebraic cycles are fundamental. The classical conjectures of Hodge and Tate give us methods of recognizing subvarieties (and their linear combinations) in algebraic varieties. In the case of Abelian varieties, the additional group structure and the simple structure of the cohomology makes people more explicit formulations. Our recent work about understanding the relationship between cohomological spaces of cycles on an Abelian variety and on its reduction modulo a prime is aimed at increasing our understanding of algebraic cycles, though this goal may be far off. However, there are many problems which seem quite accessible (such as proving that a cohomology class can be declared to be a Tate class by checking the action of a finite number of Frobenius elements) and this project will focus on a few of those, based on recent work by the author. 2) Another fundamental tool in number theory is that of L-function, an analytic object built from local data, which mysteriously learns about global data. In our project, we will actually look at spaces of L-functions that have additional algebraic structure (they form a ring). The purpose of studying collections of L-functions is to then ascertain what properties can actually be 'deformed' along a collection. Again, this kind of question is still too vague and too distant, and to get to the point where we might start thinking about such questions, we need to analyze the analysis and hopefully the geometry and topology of spaces of L-functions. Some first steps have been taken with the definitions of the Selberg and Lindelof classes. In this project, we will continue to work to clarify the algebraic structure of the Lindelof class. 3) There are many mathematical questions that are inspired by problems in information technology. One is to make explicit the arithmetic on Abelian varieties over finite fields. These are higher dimensional versions of elliptic curves and one might hope to form a public-key encryption scheme using such objects. There are of course some impediments to this such as new attacks on higher dimensional varieties and the possible construction of a quantum computer. Nevertheless, understanding explicitly, and hence computationally, the arithmetic on these higher dimensional varieties may for the foundation of a new kind of encryption scheme, not exactly modeled on the discrete logarithm, but perhaps on the more quantum-resistant model using isogenies. In addition to this kind of fundamental mathematical work, there are also problems involving algorithms to ensure security and privacy in transactions such as e-payments and e-health.
我们将研究与信息技术产生的代数圈和阿贝尔簇、L函数和数学有关的几个问题。 1)在Abel簇的算术和几何中,关于代数圈的猜想是基本的。Hodge和Tate的经典猜想给我们提供了识别代数簇中的亚簇(及其线性组合)的方法。在Abelian簇的情况下,上同调的附加群结构和简单结构使人们得到了更明确的表述。我们最近关于理解Abel簇上圈的上同调空间与模为素数的约化之间的关系的工作旨在增加我们对代数圈的理解,尽管这一目标可能还很遥远。然而,有许多问题似乎很容易解决(例如,通过检查有限个Frobenius元素的作用来证明上同调类可以被声明为Tate类),本项目将根据作者最近的工作重点讨论其中的几个问题。 2)数论中的另一个基本工具是L函数,这是一个从局部数据建立的分析对象,它神秘地了解全局数据。在我们的项目中,我们将实际查看L的空间--具有附加代数结构的函数(它们形成环)。研究L函数集合的目的是为了确定在集合上哪些性质实际上是可以“变形”的。同样,这类问题仍然太模糊和太遥远,为了达到我们可能开始思考这些问题的地步,我们需要分析L函数的空间的几何和拓扑。对于Selberg和Lindelof类的定义已经采取了一些初步步骤。在这个项目中,我们将继续致力于阐明Lindelof类的代数结构。 3)有许多数学问题是受信息技术中的问题启发而来的。其一是给出有限域上阿贝尔簇的显式算法。这些是椭圆曲线的高维版本,人们可能希望使用这些对象来形成公钥加密方案。当然,这也有一些障碍,比如对更高维物种的新攻击,以及可能建造的量子计算机。然而,明确地理解,因此在计算上,这些高维变体上的算法可能会成为一种新的加密方案的基础,这种方案不是精确地建立在离散对数的基础上,而是可能建立在使用同源的更抗量子的模型上。除了这类基本的数学工作外,还存在涉及算法的问题,以确保电子支付和电子健康等交易的安全和隐私。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murty, Vijayakumar其他文献

Murty, Vijayakumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Murty, Vijayakumar', 18)}}的其他基金

Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics for Public Health (MfPH)
公共卫生数学(MfPH)
  • 批准号:
    560523-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Emerging Infectious Diseases Modelling Initiative (EIDM)
Mathematics for Public Health (MfPH)
公共卫生数学(MfPH)
  • 批准号:
    560523-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Emerging Infectious Diseases Modelling Initiative (EIDM)
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    44342-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    44342-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    44342-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Revokeable access to content
可撤销的内容访问权限
  • 批准号:
    485841-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
  • 批准号:
    RGPIN-2022-03116
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic geometry and algebraic number theory
算术几何与代数数论
  • 批准号:
    CRC-2017-00306
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Canada Research Chairs
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    DGECR-2022-00444
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Launch Supplement
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    RGPIN-2022-03461
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
  • 批准号:
    RGPIN-2022-02980
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
  • 批准号:
    DGECR-2022-00434
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Launch Supplement
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
  • 批准号:
    2101761
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了