Automorphic Forms and Number Theory
自守形式和数论
基本信息
- 批准号:RGPIN-2018-04861
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research centers on automorphic forms and L-functions, and their applications in Number Theory and Langlands program. I have four projects.
First, we study number theoretic results in a family of number fields. There are many results in the literature assuming generalized Riemann hypothesis (GRH). One cannot prove a result for individual member unconditionally. However, if we consider a family, we can prove unconditional results of the following two forms:
(1) one can prove average result in a family; (2) one can prove that the result is valid for almost all members except for a density zero set.
Second, counting monogenic number fields. Monogenic number fields are those with power integral basis. Counting monogenic S_3-number fields is related to counting elliptic curves. Even the weaker result |L^{(m)}(X)|=o(X) is unknown. Recently Bhargava and others obtained the lower bound |L^{(m)}(X)|>> X^{1/2+1/n}. I obtained a result for dihedral extensions. Let L_d(X) be the set of D_4-extensions with absolute discriminant> |d_K|^{1/16}. Here effective Diophantine approximation was used to obtain the minimum of binary cubic forms.
Third, we study Langlands functoriality, in particular Ikeda lift. With T. Yamauchi, I obtained an Ikeda type lift for exceptional group of type E_{7,3} (exceptional group of type E_7 of Q-rank 3 which acts on the exceptional tube domain inside C^{27}. We will extend our result on the exceptional group to congruence subgroups. Furthermore, we are working on Ikeda lift on the exceptional group of type G_2. It will be the first example of cusp forms with level one with quaternionic discrete series. Also we can construct Ikeda lift on E_{6,2}, a form of the exceptional group which acts on Hermitian symmetric domain.
Fourth, equidistribution of holomorphic cusp forms of Sp_{2r}. With S. Wakatsuki and T. Yamauchi, I obtained equidistribution theorems of holomorphic cusp forms of GSp_4 such as vertical Sato-Tate theorem, low-lying zeros of degree 4 L-functions and degree 5 standard L-functions. In particular, we showed that the n-level densities agree with Katz-Sarnak prediction. We are extending our results to Sp_{2r}. In particular, we can obtain n-level density of the degree 2r+1 standard L-functions.
我主要研究自同构型和L函数,以及它们在数论和朗兰兹程序中的应用。我有四个项目。
首先,我们研究了一族数域中的数论结果。在假设广义黎曼假设(GRH)的文献中有很多结果。一个人不能无条件地证明个别成员的结果。然而,如果我们考虑一个家庭,我们可以证明以下两种形式的无条件结果:
(1)可以证明一个族中的平均结果;(2)可以证明该结果对除密度零集以外的几乎所有成员都有效。
二是对单基因数域进行计数。一元数域是指具有幂整数基的数域。对单基因S 3数域的计数与对椭圆曲线的计数有关。即使较弱的结果|L^{(M)}(X)|=o(X)也是未知的。最近,Bhargava等人得到了下界|L^{(M)}(X)|>;>;X^{1/2+1/n}。我得到了二面体扩张的一个结果。设L_d(X)是具有绝对判别式的D_4-扩张集,|d_K|^{1/16}。这里使用有效丢番图近似来获得二元三次形的最小值。
第三,我们研究了朗兰兹函数,特别是Ikeda Lift。与T.Yamuchi一起,我得到了E_(7,3)型例外群(作用于C^{27}内例外管域上的Q-秩3型E_7型例外群)的Ikeda型升力。我们将把我们关于例外群的结果推广到同余子群。此外,我们还研究了G_2型例外群上的Ikeda升力。这将是第一个具有四元数离散级数的一级尖点形式的例子。我们还可以在E_(6,2)上构造Ikeda Lift,E_(6,2)是作用在Hermite对称域上的例外群的一种形式。
第四,Sp_(2r)的全纯尖点形式的均匀分布。与S.Wakatsuki和T.Yamuchi一起,我得到了GSP_4的全纯尖点形式的等分布定理,如垂直Sato-Tate定理、四次L函数的低阶零点和五次标准L函数。特别地,我们证明了n能级密度与Katz-Sarnak的预测一致。我们将我们的结果推广到Sp_{2R}。特别地,我们可以得到2R+1次标准L函数的n能级密度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIM, Henry其他文献
KIM, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIM, Henry', 18)}}的其他基金
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Applications of Automorphic Forms in Number Theory and Combinatorics
自守形式在数论和组合学中的应用
- 批准号:
1363265 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Explicit study of number theory of automorphic forms of several variables related to trace formulas.
与迹公式相关的几个变量的自守形式数论的显式研究。
- 批准号:
25247001 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Randomness in number theory and automorphic forms
数论中的随机性和自守形式
- 批准号:
1302952 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Analytic number theory and periods of automorphic forms
解析数论和自守形式周期
- 批准号:
1162535 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Zeta functions associated with automorphic distributions and an analytic number theory of quartic forms
与自守分布相关的 Zeta 函数和四次形式的解析数论
- 批准号:
24540029 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit construction of automorphic forms and its application to number theory and geometry
自守形式的显式构造及其在数论和几何中的应用
- 批准号:
21740025 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)