Automorphic Forms and Number Theory
自守形式和数论
基本信息
- 批准号:RGPIN-2018-04861
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research centers on automorphic forms and L-functions, and their applications in Number Theory and Langlands program. I have four projects.******First, we study number theoretic results in a family of number fields. There are many results in the literature assuming generalized Riemann hypothesis (GRH). One cannot prove a result for individual member unconditionally. However, if we consider a family, we can prove unconditional results of the following two forms:***(1) one can prove average result in a family; (2) one can prove that the result is valid for almost all members except for a density zero set.******Second, counting monogenic number fields. Monogenic number fields are those with power integral basis. Counting monogenic S_3-number fields is related to counting elliptic curves. Even the weaker result |L^{(m)}(X)|=o(X) is unknown. Recently Bhargava and others obtained the lower bound |L^{(m)}(X)|>> X^{1/2+1/n}. I obtained a result for dihedral extensions. Let L_d(X) be the set of D_4-extensions with absolute discriminant> |d_K|^{1/16}. Here effective Diophantine approximation was used to obtain the minimum of binary cubic forms.******Third, we study Langlands functoriality, in particular Ikeda lift. With T. Yamauchi, I obtained an Ikeda type lift for exceptional group of type E_{7,3} (exceptional group of type E_7 of Q-rank 3 which acts on the exceptional tube domain inside C^{27}. We will extend our result on the exceptional group to congruence subgroups. Furthermore, we are working on Ikeda lift on the exceptional group of type G_2. It will be the first example of cusp forms with level one with quaternionic discrete series. Also we can construct Ikeda lift on E_{6,2}, a form of the exceptional group which acts on Hermitian symmetric domain.******Fourth, equidistribution of holomorphic cusp forms of Sp_{2r}. With S. Wakatsuki and T. Yamauchi, I obtained equidistribution theorems of holomorphic cusp forms of GSp_4 such as vertical Sato-Tate theorem, low-lying zeros of degree 4 L-functions and degree 5 standard L-functions. In particular, we showed that the n-level densities agree with Katz-Sarnak prediction. We are extending our results to Sp_{2r}. In particular, we can obtain n-level density of the degree 2r+1 standard L-functions.
My research centers on automorphic forms and L-functions, and their applications in Number Theory and Langlands program. I have four projects.******First, we study number theoretic results in a family of number fields. There are many results in the literature assuming generalized Riemann hypothesis (GRH). One cannot prove a result for individual member unconditionally. However, if we consider a family, we can prove unconditional results of the following two forms:***(1) one can prove average result in a family; (2) one can prove that the result is valid for almost all members except for a density zero set.******Second, counting monogenic number fields. Monogenic number fields are those with power integral basis. Counting monogenic S_3-number fields is related to counting elliptic curves. Even the weaker result |L^{(m)}(X)|=o(X) is unknown. Recently Bhargava and others obtained the lower bound |L^{(m)}(X)|>> X^{1/2+1/n}. I obtained a result for dihedral extensions. Let L_d(X) be the set of D_4-extensions with absolute discriminant> |d_K|^{1/16}. Here effective Diophantine approximation was used to obtain the minimum of binary cubic forms.******Third, we study Langlands functoriality, in particular Ikeda lift. With T. Yamauchi, I obtained an Ikeda type lift for exceptional group of type E_{7,3} (exceptional group of type E_7 of Q-rank 3 which acts on the exceptional tube domain inside C^{27}. We will extend our result on the exceptional group to congruence subgroups. Furthermore, we are working on Ikeda lift on the exceptional group of type G_2. It will be the first example of cusp forms with level one with quaternionic discrete series. Also we can construct Ikeda lift on E_{6,2}, a form of the exceptional group which acts on Hermitian symmetric domain.******Fourth, equidistribution of holomorphic cusp forms of Sp_{2r}. With S. Wakatsuki and T. Yamauchi, I obtained equidistribution theorems of holomorphic cusp forms of GSp_4 such as vertical Sato-Tate theorem, low-lying zeros of degree 4 L-functions and degree 5 standard L-functions. In particular, we showed that the n-level densities agree with Katz-Sarnak prediction. We are extending our results to Sp_{2r}. In particular, we can obtain n-level density of the degree 2r+1 standard L-functions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim, Henry其他文献
The Regulation Paradox of Initial Coin Offerings: A Case Study Approach
- DOI:
10.3389/fbloc.2019.00002 - 发表时间:
2019-04-05 - 期刊:
- 影响因子:3.1
- 作者:
Zhang, Alfred Ruoxi;Raveenthiran, Anujan;Kim, Henry - 通讯作者:
Kim, Henry
Kim, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim, Henry', 18)}}的其他基金
Automorphic Forms and Lie Algebras
自守形式和李代数
- 批准号:
250464-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Lie Algebras
自守形式和李代数
- 批准号:
250464-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Lie Algebras
自守形式和李代数
- 批准号:
250464-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Enabling data management for big data business analytics for Sphere3D using context-aware ontologies
使用上下文感知本体为 Sphere3D 的大数据业务分析启用数据管理
- 批准号:
479780-2015 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Developing a social and trust-based book recommender system for Indigo
为 Indigo 开发基于社交和信任的图书推荐系统
- 批准号:
488451-2015 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Automorphic Forms and Lie Algebras
自守形式和李代数
- 批准号:
250464-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Using ontologies and social network analysis for web 2.0 enabled knowledge sharing
使用本体论和社交网络分析来实现 Web 2.0 知识共享
- 批准号:
227773-2009 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Leveraging supply chain automation expertise to develop supply chain analytics capabilities
利用供应链自动化专业知识开发供应链分析能力
- 批准号:
469310-2014 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Automorphic Forms and Lie Algebras
自守形式和李代数
- 批准号:
250464-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Using ontologies and social network analysis for web 2.0 enabled knowledge sharing
使用本体论和社交网络分析来实现 Web 2.0 知识共享
- 批准号:
227773-2009 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Applications of Automorphic Forms in Number Theory and Combinatorics
自守形式在数论和组合学中的应用
- 批准号:
1363265 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Explicit study of number theory of automorphic forms of several variables related to trace formulas.
与迹公式相关的几个变量的自守形式数论的显式研究。
- 批准号:
25247001 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Randomness in number theory and automorphic forms
数论中的随机性和自守形式
- 批准号:
1302952 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Analytic number theory and periods of automorphic forms
解析数论和自守形式周期
- 批准号:
1162535 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Zeta functions associated with automorphic distributions and an analytic number theory of quartic forms
与自守分布相关的 Zeta 函数和四次形式的解析数论
- 批准号:
24540029 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit construction of automorphic forms and its application to number theory and geometry
自守形式的显式构造及其在数论和几何中的应用
- 批准号:
21740025 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)