Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
基本信息
- 批准号:RGPIN-2019-04000
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal is concerned with problems at the crossroads of number theory and string theory. String theory is a physics prediction that what the universe is made of, is, strings (one-dimensional
objects), rather than point particles (zero-dimensional objects). String theory demands ten-dimensional
space-time (as opposed to the dimension four of our real world). This is, roughly speaking, because
more dimensions can accommodate more possible string vibrations. The extra six-dimensional objects
in string theory are known as Calabi-Yau threefolds, and they are the main objects of this investigation.
The goal of the proposed research is to understand the physical prediction of mirror symmetry for
Calabi-Yau manifolds, and its consequences, from a mathematical point of view. A Calabi-Yau
manifold is a compact complex Kaehler manifold with vanishing first Chern class and zero first
Betti number. Calabi-Yau manifolds of dimension one, two, and three are, respectively, elliptic
curves, K3 surfaces, and Calabi-Yau threefolds.
Mirror symmetry is a prediction in string theory that certain "mirror pairs" of Calabi-Yau threefolds
yield identical physical theories. Modular forms, Siegel and Jacobi modular forms, and automorphic
forms appear, either as generating functions of geometric invariants, or as partition functions.
One
of my research goals is to interpret mirror symmetry in terms of arithmetic invariants such as
zeta-functions and L-series of the Calabi-Yau manifolds. In this connection, the automorphy question
for the L-series will be vigorously pursued. Here, "automorphy" refers to the fact that the (motivic)
L-series arising from Calabi-Yau manifolds are automorphic L-series as in the context of the Langlands
program. At the moment, the most pressing issue is to address the automorphy question for families
of Calabi-Yau manifolds with all Hodge numbers of the third cohomology equal to one. Such families
give rise to four-dimensional Galois representations. A very crude conjecture is that these irreducible
four-dimensional Galois representations should correspond to Siegel modular forms of weight 3 and
genus 2 on some paramodular subgroups of Sp(4, Z).
Another central goal is the conceptual understanding of the appearance of various modular forms
in the partition functions, and of the generating functions of the Gromov-Witten invariants, the
Donaldson-Thomas invariants, the Gopakumar-Vafa invariants and other geometric or physical
invariants (e.g, BPS state counting numbers), for Calabi-Yau manifolds. It is imperative to lay
solid mathematical foundations for string theory, for the benefit of both mathematicians and
string theorists.
I plan to train HQP (postdoctoral fellows and graduate students) through this project. My approach will be to assign concrete examples to each of them to work out and understand the main goal of this project. and eventually lead to new mathematical discoveries.
该提案涉及数论和弦论交叉的问题。弦理论是一种物理学预言,宇宙是由弦(一维)构成的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUI, NORIKO其他文献
YUI, NORIKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUI, NORIKO', 18)}}的其他基金
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Calabi-Yau 品种:算术、几何和物理
- 批准号:
RGPIN-2014-04711 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
分次斜 Calabi-Yau 代数的研究
- 批准号:Y24A010046
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于退化Calabi-Yau流形的研究
- 批准号:12301059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于黎曼流形上精确 Li-Yau 型梯度估计的研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
- 批准号:11901396
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
模型结构、三角范畴与Calabi-Yau代数
- 批准号:11871125
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
Poincaré-Mok-Yau 型典则 Kähler 度量的存在性
- 批准号:11701426
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
- 批准号:11601015
- 批准年份:2016
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
箭图代数与Calabi-Yau范畴
- 批准号:11671230
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
Calabi-Yau范畴上的非交换几何结构
- 批准号:11671281
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
单位球面中极小超曲面的第一特征值的Yau的猜想
- 批准号:11501500
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
- 批准号:
2227199 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Mathematics on Calabi-Yau manifolds and related topics
Calabi-Yau 流形数学及相关主题
- 批准号:
20K03530 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex Monge-Ampère equations and Calabi-Yau manifolds with singularities
复杂的 Monge-Ampère 方程和具有奇点的 Calabi-Yau 流形
- 批准号:
2260081 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Manifolds: Families, Fibrations, and Degenerations
卡拉比-丘流形:族、纤维化和退化
- 批准号:
2299824 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
Calculation of Gross-Siebert mirror rings for log Calabi-Yau manifolds.
对数 Calabi-Yau 流形的 Gross-Siebert 镜环的计算。
- 批准号:
2279765 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
Mordell-Weil Groups of elliptically-fibered Calabi-Yau manifolds
椭圆纤维 Calabi-Yau 流形的 Mordell-Weil 群
- 批准号:
19K03427 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)