Complex Monge-Ampère equations and Calabi-Yau manifolds with singularities
复杂的 Monge-Ampère 方程和具有奇点的 Calabi-Yau 流形
基本信息
- 批准号:2260081
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This student is currently studying in the topic area of Calabi-Yau manifolds. The main aim (for now) is to prove the Calabi Conjecture in the asymptotically conical case while admitting isolated canonical singularities.
这个学生目前正在学习卡-丘流形的主题领域。主要目的(现在)是证明卡拉比猜想在渐近圆锥的情况下,同时承认孤立的典型奇点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Monge-Ampère方程和k-Hessian方程解的存在性与边界渐近行为研究
- 批准号:12371112
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
抛物型Monge-Ampère方程的新探索
- 批准号:12371200
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
一般凸区域上退化Monge-Ampère方程解的整体正则性
- 批准号:12301250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Monge-Ampère方程的外Liouville定理及相关问题
- 批准号:12301249
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
紧Kähler流形上Monge-Ampère型方程解的存在性问题
- 批准号:12301098
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Monge-Ampère型方程和方程组的若干定性问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于Monge-Ampère方程自由边界的正则性及相关问题
- 批准号:12171185
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
Monge-Ampère型方程及相关研究
- 批准号:12141103
- 批准年份:2021
- 资助金额:330 万元
- 项目类别:专项基金项目
预定仿射曲率的Monge-Ampère方程
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:地区科学基金项目
强线性凸域上的复测地线与复Monge-Ampère方程
- 批准号:12001513
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
- 批准号:
FT220100368 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Singularity and regularity for Monge-Ampere type equations
Monge-Ampere 型方程的奇异性和正则性
- 批准号:
DP230100499 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Microlocal Analysis and Monge-Ampère Type Equations in Geometry
几何中的微局域分析和 Monge-Ampère 型方程
- 批准号:
2204347 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
A generalization of the Monge-Ampere equation to almost complex geometry and its new potential applications
蒙日-安培方程对几乎复杂几何的推广及其新的潜在应用
- 批准号:
21K13798 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
- 批准号:
DP200101084 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
- 批准号:
1914719 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




