Decision Support System for Stereotactic Radiosurgery
立体定向放射外科决策支持系统
基本信息
- 批准号:RGPIN-2019-04715
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Gamma Knife (GK) system uses 192 small radiation beams that converge to deliver a high radiation dose within a brain tumour. This technique, called “stereotactic radiosurgery” (SRS) is an effective way of treating brain cancer. The point at which the beams intersect is called an “isocentre” and the treatment involves multiple isocentres to ensure the entire tumour receives a curative dose. Determination of the best isocentre positions and corresponding dwell times is a complex task, since there is a direct conflict between maximizing tumour dose and minimizing dose in surrounding healthy brain. Furthermore, as the number of patients requiring treatment is rapidly increasing due to an aging population and improved drug therapies, we need efficient computerized methods for automating this process. The present research program involves developing models of automation in order to obtain a deeper understanding of the complex interplay between the various objectives. The present program involves two main themes of research as follows.
In the first theme, we will explore novel “inverse” automation models. In inverse methods we define the desired output and the computer infers the input. In SRS the desired output is a high radiation dose to the tumour and low dose to normal tissue and the input is the radiation dwell time at each isocentre. The mathematical formulation involves minimizing the numerical difference between the ideal and model-predicted radiation dose. Since the goals conflict (high tumour dose vs. low normal brain dose) and computers do not know what tradeoffs are acceptable, the user sets priorities in the algorithm via weighting factors. However since the relationship of such weight parameters to the solution is not known in advance, one needs to repeat the computation with different weight factors, and by doing so we generate a reasonable model of the problem. The mathematical models will ultimately feed back to end users to decide how weighting factors should be allocated, which will lead to completely automated planning in the future.
In the second theme, our group will explore novel artificial intelligence (AI) based automation models. In AI, thousands of cases are used to define features such as tumour volume, and tumour histology. Novel mathematical approaches are then used to establish linkages between all of the features and the outcome, which can be a treatment plan quality metric. The result is a model that we can use to better understand the complex interplay between all of the features and outcome. It is possible to validate a given model by testing its predictive power for an unknown case, not included in the modeling itself. However the emphasis of the current program is in the engineering of the models to understand the problem. The successful completion of this program will lead to future clinically-oriented studies that can use such prediction models for informing plan quality outcome.
伽玛刀(GK)系统使用192个小辐射束汇聚,在脑肿瘤内传递高剂量的辐射。这种技术被称为“立体定向放射外科”(SRS),是治疗脑癌的有效方法。光束相交的点被称为“等中心点”,治疗包括多个等中心点,以确保整个肿瘤接受治疗剂量。确定最佳等中心位置和相应的停留时间是一项复杂的任务,因为在周围健康大脑中存在最大肿瘤剂量和最小剂量之间的直接冲突。此外,由于人口老龄化和药物治疗的改进,需要治疗的患者数量正在迅速增加,我们需要有效的计算机化方法来自动化这一过程。目前的研究计划包括开发自动化模型,以便更深入地了解各种目标之间复杂的相互作用。本项目涉及以下两个主要研究主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruschin, Mark其他文献
Dosimetric Impact of Using a Virtual Couch Shift for Online Correction of Setup Errors for Brain Patients on an Integrated High-Field Magnetic Resonance Imaging Linear Accelerator
- DOI:
10.1016/j.ijrobp.2017.03.004 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:7
- 作者:
Ruschin, Mark;Sahgal, Arjun;Lee, Young - 通讯作者:
Lee, Young
Prospective Study of Breast Radiation Dermatitis
- DOI:
10.1016/j.clbc.2018.03.008 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:3.1
- 作者:
Drost, Leah;Li, Nim;Ruschin, Mark - 通讯作者:
Ruschin, Mark
Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit
- DOI:
10.1016/j.ijrobp.2012.03.022 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:7
- 作者:
Ruschin, Mark;Komljenovic, Philip T.;Jaffray, David - 通讯作者:
Jaffray, David
Technical Note: Multipurpose CT, ultrasound, and MRI breast phantom for use in radiotherapy and minimally invasive interventions
- DOI:
10.1118/1.4947124 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:3.8
- 作者:
Ruschin, Mark;Davidson, Sean R. H.;McCann, Claire - 通讯作者:
McCann, Claire
Surgical Resection With Radiation Treatment Planning of Spinal Tumors
- DOI:
10.1093/neuros/nyy176 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:4.8
- 作者:
Jakubovic, Raphael;Ruschin, Mark;Yang, Victor X. D. - 通讯作者:
Yang, Victor X. D.
Ruschin, Mark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruschin, Mark', 18)}}的其他基金
Decision Support System for Stereotactic Radiosurgery
立体定向放射外科决策支持系统
- 批准号:
RGPIN-2019-04715 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Decision Support System for Stereotactic Radiosurgery
立体定向放射外科决策支持系统
- 批准号:
RGPIN-2019-04715 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Decision Support System for Stereotactic Radiosurgery
立体定向放射外科决策支持系统
- 批准号:
RGPIN-2019-04715 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
- 批准号:21002080
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
- 批准号:70501008
- 批准年份:2005
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
- 批准号:
2339992 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
CAREER: A Cyberinfrastructure Enabled Hybrid Spatial Decision Support System for Improving Coastal Resilience to Flood Risks
职业:网络基础设施支持的混合空间决策支持系统,可提高沿海地区对洪水风险的抵御能力
- 批准号:
2339174 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Building and Implementing a predictive decision support system based on a proactive full capacity protocol to mitigate emergency overcrowding problem
建立和实施基于主动全容量协议的预测决策支持系统,以缓解紧急过度拥挤问题
- 批准号:
10810217 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Establishment of data-driven decision support system of tropical wetland high carbon reservoir by the integration of big satellited data and IoT observation technologies
卫星大数据与物联网观测技术融合,建立数据驱动的热带湿地高碳库决策支持系统
- 批准号:
22KJ2226 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Net Zero Caerphilly Whole System Decision Support Toolkit (NetZeroCaer)
净零卡菲利整个系统决策支持工具包 (NetZeroCaer)
- 批准号:
10060600 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Feasibility Studies
Decision-making support system for patient-specific treatment strategies using tumor stiffness imaging during head and neck radiotherapy
头颈放疗期间使用肿瘤硬度成像为患者制定治疗策略的决策支持系统
- 批准号:
23K14870 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Digital BIM Information Manager (eBIM): A Decision Support System for Whole Life Management of BIM-based Construction Projects.
数字 BIM 信息管理器 (eBIM):基于 BIM 的施工项目全生命周期管理的决策支持系统。
- 批准号:
10044411 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative R&D
STRATIFYHF: Artificial intelligence-based decision support system for risk stratification and early detection of heart failure in primary and secondary care
STRATIFYHF:基于人工智能的决策支持系统,用于初级和二级护理中心力衰竭的风险分层和早期检测
- 批准号:
10073472 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
EU-Funded
STRATIFYHF: Artificial intelligence-based decision support system for risk stratification and early detection of heart failure in primary and secondary care
STRATIFYHF:基于人工智能的决策支持系统,用于初级和二级护理中心力衰竭的风险分层和早期检测
- 批准号:
10078118 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
EU-Funded