Combinatorial structures in quantum field theory
量子场论中的组合结构
基本信息
- 批准号:RGPIN-2019-04412
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum field theories (QFTs) give the most precise descriptions known of the fundamental particles which make up the universe. Perturbative QFT is the approach whereby field theoretical quantities are expanded as infinite sums of Feynman integrals. However, each individual integral is difficult; there are many that we have no way to evaluate, even numerically. Furthermore, the infinite series of Feynman integrals are typically divergent. To extract meaning from them we need to understand the recursive structure of perturbation theory.
The overarching goal of my research program is to understand these matters using a combinatorial aesthetic and toolbox, and to develop new combinatorial and physical tools that lead to new insights.
There are two large scale objectives within this overarching goal. First is to understand patterns in the values of Feynman graphs using properties of the graphs themselves. Second is to understand the recursive structure of QFT, particularly the Dyson-Schwinger equations (the quantum equations of motion), so as to rigorously and effectively resum graphs using combinatorial insights.
These large scale objectives will be approached via a number of parallel short term objectives with the participation of students and collaborators. I have an excellent track record in this area and have trained 18 students who have gone on both in industry and academia. There remain many accessible yet fundamental questions that we will tackle in the coming years in order to advance the state of the art in both discrete mathematics and mathematical physics. Students will benefit by learning and developing new mathematics and working interdisciplinarily.
Success in this program will produce both exciting mathematical results arising from the physics and useful physical results achieved using mathematics. The beauty and power of the program come from the two-way interaction between physics and pure mathematics.
Achieving the first objective would shortcut the intricate computation of Feynman integrals and thus reveal currently inaccessible consequences of physical theories, including those which describe our world. Partial progress will help us understand the structure of QFT, and hence of our world, and also enrich our understanding of related mathematical objects, such as multiple zeta values, as well as feeding back into graph theory with new problems and new results.
Achieving the second objective would give a rigorous underpinning to perturbative QFT and a rigorous link to the non-perturbative world. Partial results let us obtain better approximations to physically meaningful quantities and functions, and show us qualitative properties of our systems, as well as yielding rich combinatorial problems.
The time is right for this program because related areas, such as resurgence theory, are maturing to the point that they are ready to be woven in, increasing the power of my program to answer fundamental questions.
量子场论(QFTs)对构成宇宙的基本粒子给出了已知的最精确的描述。微扰QFT是将场论量展开为无限费曼积分和的方法。然而,每个单独的积分都是困难的;有很多是我们无法评估的,即使是数值上的。此外,费曼积分的无穷级数通常是发散的。为了从中提取意义,我们需要理解微扰理论的递归结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeats, Karen其他文献
Combinatorial and Algebraic Enumeration: a survey of the work of Ian P. Goulden and David M. Jackson
组合和代数枚举:Ian P. Goulden 和 David M. Jackson 工作综述
- DOI:
10.5802/alco.269 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Foley, Angèle M.;Morales, Alejandro H.;Rattan, Amarpreet;Yeats, Karen - 通讯作者:
Yeats, Karen
Yeats, Karen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yeats, Karen', 18)}}的其他基金
Combinatorics of quantum field theory
量子场论的组合学
- 批准号:
CRC-2021-00166 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Canada Research Chairs
Combinatorial structures in quantum field theory
量子场论中的组合结构
- 批准号:
RGPIN-2019-04412 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics Of Quantum Field Theory
量子场论的组合学
- 批准号:
CRC-2016-00150 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Canada Research Chairs
Combinatorial structures in quantum field theory
量子场论中的组合结构
- 批准号:
RGPIN-2019-04412 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics of quantum field theory
量子场论的组合学
- 批准号:
CRC-2016-00150 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Canada Research Chairs
Combinatorics of quantum field theory
量子场论的组合学
- 批准号:
CRC-2016-00150 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Canada Research Chairs
Combinatorial structures in quantum field theory
量子场论中的组合结构
- 批准号:
RGPIN-2019-04412 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial approaches to quantum field theory
量子场论的组合方法
- 批准号:
RGPIN-2014-06146 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics of quantum field theory
量子场论的组合学
- 批准号:
CRC-2016-00150 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Canada Research Chairs
Combinatorics of quantum field theory
量子场论的组合学
- 批准号:
CRC-2016-00150 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Canada Research Chairs
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4: NSF: Fabrication of Inversely Designed Nanophotonic Structures for Quantum Emitters
RII Track-4:NSF:用于量子发射器的逆向设计纳米光子结构的制造
- 批准号:
2327223 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
- 批准号:
10622691 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microscopic investigation of crystal structures at 100 Tesla using novel quantum beams
使用新型量子束在 100 特斯拉下对晶体结构进行显微研究
- 批准号:
23H01121 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Search for novel topological quantum phases and elucidation of their electronic structures using multiple degrees of freedom in heavy electron systems
在重电子系统中使用多自由度寻找新颖的拓扑量子相并阐明其电子结构
- 批准号:
23H01132 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
- 批准号:
23KK0051 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
- 批准号:
23H05455 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant