Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems

跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化

基本信息

  • 批准号:
    RGPIN-2019-04798
  • 负责人:
  • 金额:
    $ 6.63万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Modelling and simulation of coupled, multi-scale, multi-physics phenomena are crucial for the design and optimization of novel, complex engineered systems. For instance, cutting-edge developments in battery technologies, enabling the electric vehicle (EV) revolution, require consideration of thermal, electrical, and chemical phenomena and their impact at the component and system levels. Similarly, transformative tissue engineering and organ regeneration technologies seek to maximize yield by effecting precise control of cells' chemical, biological and mechanical environments at the micro- and macro-scale. In all these applications, thermal and fluid flow phenomena are key to system performance, yet simultaneous consideration of other physical domains (electrical, chemical, biological) is needed for accurate predictions of system performance. We will develop a methodology for multi-scale, multi-physics modeling, simulation and optimization for these and other applications, where performance is both enabled and constrained by tight, non-linear coupling between multiple physical phenomena across multiple length/time scales. In particular, we will focus on applications in (a) high-performance materials and structures for electronics (transistors) and energy storage (batteries), (b) thermo-electro-chemical management of intelligent batteries for EVs, and (c) tissue engineering technologies for organ regeneration. Powered by the proposed methodology, we will (i) increase our understanding of the physical processes underlying these applications at the nano-, meso- and macro-scales, through both simulations and experiments, (ii) optimize the performance of battery cells and tissue bioreactors and experimental protocols, and (iii) train the next generation of engineers that will support Canada's global technological leadership, leveraging our lab's unique position as a collaborative research hub for multiple engineering and biomedical disciplines. The outcomes of this project will allow designers to tailor system geometry, materials, structures and operating conditions across multiple length scales to revolutionize system performance. Leveraging this knowledge, engineers across the globe can unleash their potential and creativity to envision innovative designs and rapidly test them with state-of-the-art computer simulations instead of costly, time-consuming experiments.
耦合、多尺度、多物理现象的建模和仿真对于设计和优化新颖、复杂的工程系统至关重要。例如,电池技术的前沿发展,使电动汽车(EV)革命,需要考虑热,电和化学现象及其在组件和系统层面的影响。同样,变革性组织工程和器官再生技术寻求通过在微观和宏观尺度上精确控制细胞的化学、生物和机械环境来最大限度地提高产量。在所有这些应用中,热和流体流动现象是系统性能的关键,但同时考虑其他物理域(电,化学,生物)需要准确预测系统性能。我们将为这些和其他应用开发一种多尺度,多物理建模,模拟和优化的方法,其中性能受到多个长度/时间尺度上多个物理现象之间的紧密非线性耦合的约束。特别是,我们将专注于(a)电子(晶体管)和能量存储(电池)的高性能材料和结构,(B)电动汽车智能电池的热电化学管理,以及(c)器官再生的组织工程技术。在所提出的方法的支持下,我们将(i)通过模拟和实验,增加我们对这些应用在纳米,中尺度和宏观尺度上的物理过程的理解,(ii)优化电池和组织生物反应器的性能和实验方案,以及(iii)培养下一代工程师,以支持加拿大的全球技术领导地位,利用我们实验室作为多个工程和生物医学学科的合作研究中心的独特地位。该项目的成果将使设计人员能够在多个长度尺度上定制系统几何形状,材料,结构和操作条件,以彻底改变系统性能。利用这些知识,地球仪的工程师可以释放他们的潜力和创造力,设想创新的设计,并快速测试他们与国家的最先进的计算机模拟,而不是昂贵,耗时的实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amon, Cristina其他文献

Cell Inertia: Predicting Cell Distributions in Lung Vasculature to Optimize Re-endothelialization.
  • DOI:
    10.3389/fbioe.2022.891407
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Chan, Jason K. D.;Chadwick, Eric A.;Taniguchi, Daisuke;Ahmadipour, Mohammadali;Suzuki, Takaya;Romero, David;Amon, Cristina;Waddell, Thomas K.;Karoubi, Golnaz;Bazylak, Aimy
  • 通讯作者:
    Bazylak, Aimy
Proximal probes based nanorobotic drawing of polymer micro/nanofibers
  • DOI:
    10.1109/tnano.2006.880453
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nain, Amrinder Singh;Amon, Cristina;Sitti, Metin
  • 通讯作者:
    Sitti, Metin
Dry Spinning Based Spinneret Based Tunable Engineered Parameters (STEP) Technique for Controlled and Aligned Deposition of Polymeric Nanofibers
  • DOI:
    10.1002/marc.200900204
  • 发表时间:
    2009-08-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nain, Amrinder S.;Sitti, Metin;Amon, Cristina
  • 通讯作者:
    Amon, Cristina
The Effect of Geometric and Hemodynamic Parameters on Blood Flow Efficiency in Repaired Tetralogy of Fallot Patients
  • DOI:
    10.1007/s10439-021-02771-6
  • 发表时间:
    2021-04-09
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Louvelle, Leslie;Doyle, Matthew;Amon, Cristina
  • 通讯作者:
    Amon, Cristina
Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique
  • DOI:
    10.1002/smll.200800101
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Nain, Amritider S.;Phillippi, Julie A.;Amon, Cristina
  • 通讯作者:
    Amon, Cristina

Amon, Cristina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amon, Cristina', 18)}}的其他基金

Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2022
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Bioreactors for Evaluation and Systematic Optimization of Decellularization and Recellularization of the Lung and Trachea
用于肺和气管脱细胞和再细胞化评估和系统优化的先进生物反应器
  • 批准号:
    523396-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Collaborative Health Research Projects
Advanced Bioreactors for Evaluation and Systematic Optimization of Decellularization and Recellularization of the Lung and Trachea
用于肺和气管脱细胞和再细胞化评估和系统优化的先进生物反应器
  • 批准号:
    523396-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Collaborative Health Research Projects
Thermal Management of Ultra-high-power Converters for Fast Charging of Electric Vehicles**
用于电动汽车快速充电的超高功率转换器的热管理**
  • 批准号:
    537317-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Engage Grants Program
Hierarchical Multi-scale Modelling of Thermal/Fluid Transport Processes in Energy-intensive Applications
能源密集型应用中热/流体传输过程的分层多尺度建模
  • 批准号:
    RGPIN-2014-06128
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical Multi-scale Modelling of Thermal/Fluid Transport Processes in Energy-intensive Applications
能源密集型应用中热/流体传输过程的分层多尺度建模
  • 批准号:
    RGPIN-2014-06128
  • 财政年份:
    2017
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Toward portable ex-vivo lung perfusion devices
走向便携式离体肺灌注装置
  • 批准号:
    502743-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Engage Grants Program
Hierarchical Multi-scale Modelling of Thermal/Fluid Transport Processes in Energy-intensive Applications
能源密集型应用中热/流体传输过程的分层多尺度建模
  • 批准号:
    462056-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

基于鱼血模型研究几种典型人用药物的Read-across假设
  • 批准号:
    21577103
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bridging the Space-Time Continuum to Investigate How Biodiversity Scales Across Subterranean Systems
合作研究:弥合时空连续体,研究生物多样性如何在地下系统中扩展
  • 批准号:
    2204670
  • 财政年份:
    2022
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2022
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Bridging the Space-Time Continuum to Investigate How Biodiversity Scales Across Subterranean Systems
合作研究:弥合时空连续体,研究生物多样性如何在地下系统中扩展
  • 批准号:
    2204671
  • 财政年份:
    2022
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer Physics Across Scales: Bridging Atomistic and Coarse-Grained Polymer Models
跨尺度的聚合物物理:桥接原子和粗粒聚合物模型
  • 批准号:
    1855334
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2019
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Across Scales to Model Cone Phototransduction
跨尺度桥接锥体光转导模型
  • 批准号:
    1812601
  • 财政年份:
    2018
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Scanning histology and immunohistochemistry-prepared tissue for bridging across scales of molecular, cellular, systems and imaging neuroscience
扫描组织学和免疫组织化学制备的组织,以跨越分子、细胞、系统和成像神经科学的尺度
  • 批准号:
    RTI-2018-00953
  • 财政年份:
    2017
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Research Tools and Instruments
Bridging the gap - a new generation process model for steels by modelling across different length scales
弥合差距 - 通过跨不同长度尺度建模的新一代钢材工艺模型
  • 批准号:
    365252-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Strategic Projects - Group
Bridging the gap - a new generation process model for steels by modelling across different length scales
弥合差距 - 通过跨不同长度尺度建模的新一代钢材工艺模型
  • 批准号:
    365252-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了