Rigidity in enveloping algebras

包络代数的刚性

基本信息

  • 批准号:
    RGPIN-2019-05650
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My research in a broad sense falls in algebra. Lie algebras and enveloping algebras are active and important research areas both within algebra and in other fields such as Mathematical Physics, Particle Physics, String Theory, Geometry, Hyperplane Aarrangement, etc. Lie theory methods used by the Fields medallist Efim Zelmanov led him to solve the Bounded Kourosh Problem in Group Theory. Lie algebras are non-commutative and non-associative objects. What is "non-commutativity"? Consider the action where we pour two chemicals in a flask. Here, it doesn't matter which product we pour first into the flask. In other words, the action is commutative. In comparison "non-associativity" involves three objects. For example, consider a chemical product obtained by mixing three different chemicals A, B, and C in a flask. So the recipe is to add together A and B first and then add C. In Mathematics formulation, we can summarize this procedure as (A+B)+C. Instead, if we first add C and A and then add B we could possibly get a different product. In other words, C+(A+B) may not be the same as (C+A)+B. We can interpret this experience and say that the action of adding chemicals is commutative bot not associative. My expertise in Algebra has led me to broaden my research program. For example, we use Artificial Intelligence and machine learning to detect and prevent abnormal access in privacy sensitive organizations like Healthcare System or TAX system. We are also developing new methods in face detection and recognition. My research program also contributes to vital problems such as Cancer diagnoses and immunotherapy. In genome-wide association study (GWAS), partial or all of the human genome is sequenced for discovering the associations between genetic factors and a disease. In GWAS the genetic variants under consideration are single nucleotide polymorphisms (SNPs), the most common type of variation among people. The number of SNPs usually goes over one million in a dataset; therefore, a set of powerful data mining and machine learning methods are needed in order to investigate genetic data to reveal the most significant genetic variants that cause a disease. In machine learning and pattern recognition, feature selection is the process of selecting the most important features of a problem while removing unnecessary ones. The use of feature selection in microarray datasets or gene expression for detecting cancer is widely investigated. Golub et al. were the first to identify a subset of 50 genes that can discriminate acute myeloid leukemia from acute lymphoblastic leukemia, and subsequently predict class membership of new leukemia cases. As part of our research program, we investigate a new feature selection method based on perturbation theory. The effectiveness of our method is verified by performing a series of comparisons with conventional and novel feature selection methods in the literature on some Cancer datasets.
我的研究在广义上属于代数。李代数和包络代数是代数以及数学物理、粒子物理、弦理论、几何、超平面排列等领域中活跃而重要的研究领域。菲尔兹奖得主Efim Zelmanov使用的Lie理论方法使他解决了群论中的有界Kourosh问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Usefi, Hamid其他文献

Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning
  • DOI:
    10.1038/s41598-020-70583-0
  • 发表时间:
    2020-08-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Khorasani, Hanieh Marvi;Usefi, Hamid;Pena-Castillo, Lourdes
  • 通讯作者:
    Pena-Castillo, Lourdes
A Feature Selection based on perturbation theory
  • DOI:
    10.1016/j.eswa.2019.02.028
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Anaraki, Javad Rahimipour;Usefi, Hamid
  • 通讯作者:
    Usefi, Hamid
Optimizing feature selection methods by removing irrelevant features using sparse least squares
  • DOI:
    10.1016/j.eswa.2022.116928
  • 发表时间:
    2022-04-07
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Afshar, Majid;Usefi, Hamid
  • 通讯作者:
    Usefi, Hamid

Usefi, Hamid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Usefi, Hamid', 18)}}的其他基金

Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Detecting crossovers in polymer fiber using machine learning
使用机器学习检测聚合物纤维中的交叉
  • 批准号:
    543748-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Engage Grants Program
Dedicated high-powered workstation for machine and deep learning in genomics and industry
用于基因组学和工业领域机器学习和深度学习的专用高性能工作站
  • 批准号:
    RTI-2020-00719
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Research Tools and Instruments
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
  • 批准号:
    2444690
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
  • 批准号:
    EP/T018844/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Research Grant
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Primitive ideals in semisimple affinoid enveloping algebras
半单仿射包络代数中的原始理想
  • 批准号:
    1789785
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了