Rigidity in enveloping algebras

包络代数的刚性

基本信息

  • 批准号:
    RGPIN-2019-05650
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My research in a broad sense falls in algebra. Lie algebras and enveloping algebras are active and important research areas both within algebra and in other fields such as Mathematical Physics, Particle Physics, String Theory, Geometry, Hyperplane Aarrangement, etc. Lie theory methods used by the Fields medallist Efim Zelmanov led him to solve the Bounded Kourosh Problem in Group Theory. Lie algebras are non-commutative and non-associative objects. What is "non-commutativity"? Consider the action where we pour two chemicals in a  flask. Here, it doesn't matter which product we pour first into the flask. In other words, the action is commutative. In comparison "non-associativity" involves three objects. For example, consider a chemical product obtained by mixing three different chemicals A, B, and C in a flask. So the recipe is to add together A and B first and then add C. In Mathematics formulation, we can summarize this procedure as (A+B)+C. Instead, if we first add C and A and then add B we could possibly get a different product. In other words, C+(A+B) may not be the same as (C+A)+B. We can interpret this experience and say that the action of adding chemicals is commutative bot not associative. My expertise in Algebra has led me to broaden my research program. For example, we use Artificial Intelligence and machine learning to detect and prevent abnormal access in privacy sensitive organizations like Healthcare System or TAX system. We are also developing new methods in face detection and recognition.  My research program also contributes to vital problems such as  Cancer diagnoses and  immunotherapy. In genome-wide association study (GWAS), partial or all of the human genome is  sequenced  for discovering the associations between genetic factors and a disease. In GWAS the genetic variants under consideration are single nucleotide polymorphisms (SNPs), the most common type of variation among people. The number of SNPs usually goes over one million in a dataset; therefore, a set of powerful data mining and machine learning methods are needed in order to investigate genetic data to reveal the most significant genetic variants that cause a disease. In machine learning and pattern recognition, feature selection is the process of selecting the most important features of a problem while removing unnecessary ones. The use of feature selection in microarray datasets or gene expression for detecting cancer is widely investigated. Golub et al. were the first to identify a subset of 50 genes that can discriminate acute myeloid leukemia from acute lymphoblastic leukemia, and subsequently predict class membership of new leukemia cases. As part of our research program, we investigate a new feature selection method based on perturbation theory. The effectiveness of our method is verified by performing a series of comparisons with conventional and novel feature selection methods in the literature on some Cancer datasets.
我的研究从广义上讲属于代数。李代数和包络代数是代数和数学物理、粒子物理、弦理论、几何、超平面排列等领域中活跃而重要的研究领域。菲尔兹奖获得者Efim Zelmanov使用的李理论方法使他解决了群论中的有界Kourosh问题。李代数是非交换的、非结合的对象。什么是“非对易”?考虑一下我们在烧瓶里倒入两种化学物质的动作。在这里,我们首先将哪种产品倒入烧瓶中并不重要。换句话说,行动是可交换的。相比之下,“非关联性”涉及三个对象。例如,考虑将三种不同的化学品A、B和C混合在烧瓶中而得到的化学产品。所以配方是先把A和B加在一起,然后再加C。在数学公式中,我们可以把这个过程概括为(A+B)+C。相反,如果我们先把C和A相加,然后再加B,我们可能得到不同的乘积。换句话说,C+(A+B)可能不等同于(C+A)+B。我们可以解释这个经验,说加化学品的行为是可交换的,而不是联想的。我在代数方面的专业知识使我拓宽了我的研究计划。例如,我们使用人工智能和机器学习来检测和防止医疗系统或税务系统等隐私敏感组织的异常访问。我们还在开发人脸检测和识别的新方法。我的研究项目也为癌症诊断和免疫治疗等关键问题做出了贡献。在全基因组关联研究中,对人类基因组的部分或全部进行测序,以发现遗传因素与疾病之间的关联。在GWA中,正在考虑的遗传变异是单核苷酸多态(SNPs),这是人类中最常见的变异类型。在一个数据集中,SNPs的数量通常超过一百万;因此,需要一套强大的数据挖掘和机器学习方法来调查遗传数据,以揭示导致疾病的最重要的遗传变异。在机器学习和模式识别中,特征选择是选择问题中最重要的特征,同时删除不必要的特征的过程。在微阵列数据集或基因表达中使用特征选择来检测癌症是被广泛研究的。戈卢布等人。他们首先确定了可以区分急性髓系白血病和急性淋巴细胞白血病的50个基因的子集,并随后预测了新白血病病例的类别成员。作为研究项目的一部分,我们研究了一种新的基于扰动理论的特征选择方法。通过在一些癌症数据集上与传统的和新颖的特征选择方法进行一系列的比较,验证了我们的方法的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Usefi, Hamid其他文献

Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning
  • DOI:
    10.1038/s41598-020-70583-0
  • 发表时间:
    2020-08-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Khorasani, Hanieh Marvi;Usefi, Hamid;Pena-Castillo, Lourdes
  • 通讯作者:
    Pena-Castillo, Lourdes
A Feature Selection based on perturbation theory
  • DOI:
    10.1016/j.eswa.2019.02.028
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Anaraki, Javad Rahimipour;Usefi, Hamid
  • 通讯作者:
    Usefi, Hamid
Optimizing feature selection methods by removing irrelevant features using sparse least squares
  • DOI:
    10.1016/j.eswa.2022.116928
  • 发表时间:
    2022-04-07
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Afshar, Majid;Usefi, Hamid
  • 通讯作者:
    Usefi, Hamid

Usefi, Hamid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Usefi, Hamid', 18)}}的其他基金

Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Detecting crossovers in polymer fiber using machine learning
使用机器学习检测聚合物纤维中的交叉
  • 批准号:
    543748-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Engage Grants Program
Dedicated high-powered workstation for machine and deep learning in genomics and industry
用于基因组学和工业领域机器学习和深度学习的专用高性能工作站
  • 批准号:
    RTI-2020-00719
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Research Tools and Instruments
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
  • 批准号:
    2444690
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
  • 批准号:
    EP/T018844/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Research Grant
Rigidity in enveloping algebras
包络代数的刚性
  • 批准号:
    RGPIN-2019-05650
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Primitive ideals in semisimple affinoid enveloping algebras
半单仿射包络代数中的原始理想
  • 批准号:
    1789785
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
  • 批准号:
    418201-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了