Rigidity in enveloping algebras
包络代数的刚性
基本信息
- 批准号:RGPIN-2019-05650
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research in a broad sense falls in algebra. Lie algebras and enveloping algebras are active and important research areas both within algebra and in other fields such as Mathematical Physics, Particle Physics, String Theory, Geometry, Hyperplane Aarrangement, etc. Lie theory methods used by the Fields medallist Efim Zelmanov led him to solve the Bounded Kourosh Problem in Group Theory. Lie algebras are non-commutative and non-associative objects. What is "non-commutativity"? Consider the action where we pour two chemicals in a flask. Here, it doesn't matter which product we pour first into the flask. In other words, the action is commutative. In comparison "non-associativity" involves three objects. For example, consider a chemical product obtained by mixing three different chemicals A, B, and C in a flask. So the recipe is to add together A and B first and then add C. In Mathematics formulation, we can summarize this procedure as (A+B)+C. Instead, if we first add C and A and then add B we could possibly get a different product. In other words, C+(A+B) may not be the same as (C+A)+B. We can interpret this experience and say that the action of adding chemicals is commutative bot not associative. My expertise in Algebra has led me to broaden my research program. For example, we use Artificial Intelligence and machine learning to detect and prevent abnormal access in privacy sensitive organizations like Healthcare System or TAX system. We are also developing new methods in face detection and recognition. My research program also contributes to vital problems such as Cancer diagnoses and immunotherapy. In genome-wide association study (GWAS), partial or all of the human genome is sequenced for discovering the associations between genetic factors and a disease. In GWAS the genetic variants under consideration are single nucleotide polymorphisms (SNPs), the most common type of variation among people. The number of SNPs usually goes over one million in a dataset; therefore, a set of powerful data mining and machine learning methods are needed in order to investigate genetic data to reveal the most significant genetic variants that cause a disease. In machine learning and pattern recognition, feature selection is the process of selecting the most important features of a problem while removing unnecessary ones. The use of feature selection in microarray datasets or gene expression for detecting cancer is widely investigated. Golub et al. were the first to identify a subset of 50 genes that can discriminate acute myeloid leukemia from acute lymphoblastic leukemia, and subsequently predict class membership of new leukemia cases. As part of our research program, we investigate a new feature selection method based on perturbation theory. The effectiveness of our method is verified by performing a series of comparisons with conventional and novel feature selection methods in the literature on some Cancer datasets.
我的研究在广义上属于代数。李代数和包络代数是代数以及数学物理、粒子物理、弦理论、几何、超平面排列等领域中活跃而重要的研究领域。菲尔兹奖得主Efim Zelmanov使用的Lie理论方法使他解决了群论中的有界Kourosh问题。李代数是非交换和非结合的对象。什么是“非交换性”?考虑一下我们在烧瓶中倒入两种化学物质的行为。在这里,我们先把哪个产品倒进烧瓶并不重要。换句话说,作用是可交换的。相比之下,“非结合性”涉及三个对象。例如,考虑在烧瓶中混合三种不同的化学品a、B和C得到的化学产品。所以这个公式就是先把A和B相加,然后再加C。在数学公式中,我们可以把这个过程概括为(A+B)+C。相反,如果我们先把C和A相加,然后再加B我们可能会得到不同的乘积。换句话说,C+(A+B)可能与(C+A)+B不一样。我们可以解释这一经验,说添加化学物质的行为是交换的,而不是结合的。我在代数方面的专长使我拓宽了我的研究项目。例如,我们使用人工智能和机器学习来检测和防止隐私敏感组织(如Healthcare System或TAX System)的异常访问。我们也在开发人脸检测和识别的新方法。我的研究项目也为癌症诊断和免疫治疗等重要问题做出了贡献。在全基因组关联研究(GWAS)中,对部分或全部人类基因组进行测序,以发现遗传因素与疾病之间的关联。在GWAS中,考虑的遗传变异是单核苷酸多态性(snp),这是人类中最常见的变异类型。在一个数据集中,snp的数量通常超过一百万个;因此,需要一套强大的数据挖掘和机器学习方法来研究遗传数据,以揭示导致疾病的最重要的遗传变异。在机器学习和模式识别中,特征选择是选择问题中最重要的特征,同时去除不需要的特征的过程。在微阵列数据集或基因表达中使用特征选择来检测癌症被广泛研究。Golub等人首先发现了一个由50个基因组成的亚群,这些基因可以区分急性髓性白血病和急性淋巴细胞白血病,并随后预测了新白血病病例的类别成员。作为我们研究计划的一部分,我们研究了一种新的基于微扰理论的特征选择方法。通过在一些癌症数据集上与文献中传统和新颖的特征选择方法进行一系列比较,验证了我们方法的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Usefi, Hamid其他文献
Detecting ulcerative colitis from colon samples using efficient feature selection and machine learning
- DOI:
10.1038/s41598-020-70583-0 - 发表时间:
2020-08-13 - 期刊:
- 影响因子:4.6
- 作者:
Khorasani, Hanieh Marvi;Usefi, Hamid;Pena-Castillo, Lourdes - 通讯作者:
Pena-Castillo, Lourdes
A Feature Selection based on perturbation theory
- DOI:
10.1016/j.eswa.2019.02.028 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:8.5
- 作者:
Anaraki, Javad Rahimipour;Usefi, Hamid - 通讯作者:
Usefi, Hamid
Optimizing feature selection methods by removing irrelevant features using sparse least squares
- DOI:
10.1016/j.eswa.2022.116928 - 发表时间:
2022-04-07 - 期刊:
- 影响因子:8.5
- 作者:
Afshar, Majid;Usefi, Hamid - 通讯作者:
Usefi, Hamid
Usefi, Hamid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Usefi, Hamid', 18)}}的其他基金
Rigidity in enveloping algebras
包络代数的刚性
- 批准号:
RGPIN-2019-05650 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
- 批准号:
RGPIN-2019-05650 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Rigidity in enveloping algebras
包络代数的刚性
- 批准号:
RGPIN-2019-05650 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Detecting crossovers in polymer fiber using machine learning
使用机器学习检测聚合物纤维中的交叉
- 批准号:
543748-2019 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Engage Grants Program
Dedicated high-powered workstation for machine and deep learning in genomics and industry
用于基因组学和工业领域机器学习和深度学习的专用高性能工作站
- 批准号:
RTI-2020-00719 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Research Tools and Instruments
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Rigidity in enveloping algebras
包络代数的刚性
- 批准号:
RGPIN-2019-05650 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
2444690 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Rigidity in enveloping algebras
包络代数的刚性
- 批准号:
RGPIN-2019-05650 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
EP/T018844/1 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Research Grant
Rigidity in enveloping algebras
包络代数的刚性
- 批准号:
RGPIN-2019-05650 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Primitive ideals in semisimple affinoid enveloping algebras
半单仿射包络代数中的原始理想
- 批准号:
1789785 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Isomorphism problem for enveloping algebras
包络代数的同构问题
- 批准号:
418201-2012 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual