Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
基本信息
- 批准号:RGPIN-2019-06271
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research focuses on the harmonic analysis and processing of signals that reside on irregular sampling kernels best described by graphs, in an emerging and fast-growing field called Graph Signal Processing (GSP). A graph is a very general abstract data structure containing nodes and edges. A node represents a sample-collecting sensor, and an edge connects two nodes with a weight that reflects pairwise similarity or correlation. Data that are modeled as signals on graphs include: (i) color attributes of a 3D point cloud representing a human body, (ii) temperature readings on a distributed network of wireless sensors in a forest, and (iii) presidential voting patterns of users on a social network like Facebook. I focus on three fundamental aspects of GSPrepresentation, restoration and samplingfor imaging applications and beyond.
1. Representation: Compact signal representation is critical for compression applications. We will address the fundamental problem of designing a graph spectrum that optimally decorrelates input data given a limited observable dataset via transforms and wavelets. We also investigate fast implementation using the lifting technique. Practical applications include compression of dynamic 3D point cloud, light field images and 360 virtual reality video.
2. Restoration: Given only partially observed noisy samples, we study restoration methods to recover the original signal with the help of signal priors. We investigate combining our previous graph-model-based approach with data-driven methods such as convolution neural networks (CNN) to optimize average-case performance while guaranteeing a worst-case quality via spectral graph theory. We study this hybrid mode-based / data-driven approach for a range of restoration problems, including point cloud denoising
3. Sampling: We investigate new sampling and reconstruction strategies for bandlimited signals on graphs, generalizing the known Nyquist sampling theorem to the graph-signal domain. We study practical scenarios including sampling with noise, active sampling, and sampling with time-varying graph topologies. Sampling plays an important role in applications where obtaining a sample is either expensive or time-consuming, such as energy-efficient depth image sensing, MRI imaging, and social network survey.
The research will be conducted by a capable and efficient team at York University, with well-established international partners in Japan, Taiwan, China, US and UK. Industrial collaborations with Cisco (Canada), NTT (Japan) and Kandao (China) are expected. The program provides excellent professional training opportunities for graduate students and post-docs in the fields of theoretical signal processing and machine learning to support a fast growing job market in 3D imaging and intelligent sensing in Canada.
我的研究重点是谐波分析和信号的处理,这些信号驻留在最好由图形描述的不规则采样内核上,这是一个新兴且快速发展的领域,称为图形信号处理(GSP)。图是包含节点和边的非常通用的抽象数据结构。一个节点代表一个样本收集传感器,一条边连接两个节点,其权重反映了两两之间的相似性或相关性。被建模为图上信号的数据包括:(i)表示人体的3D点云的颜色属性,(ii)森林中无线传感器分布式网络上的温度读数,以及(iii)Facebook等社交网络上用户的总统投票模式。我专注于三个基本方面的GSPrepresentation,恢复和采样的成像应用和超越。
1.表示:紧凑的信号表示对于压缩应用至关重要。我们将解决设计一个图谱的基本问题,通过变换和小波最佳地去相关输入数据给定一个有限的可观察数据集。我们还调查使用提升技术的快速实现。实际应用包括动态3D点云、光场图像和360度虚拟现实视频的压缩。
2.复原:在只给出部分观测噪声样本的情况下,我们研究了利用信号先验知识恢复原始信号的方法。我们研究将我们以前的基于图模型的方法与卷积神经网络(CNN)等数据驱动的方法相结合,以优化平均情况下的性能,同时通过谱图理论保证最差情况下的质量。我们研究了这种基于模式/数据驱动的混合方法,用于一系列恢复问题,包括点云去噪
3.取样:我们研究新的采样和重建策略的带限信号的图,推广已知的奈奎斯特采样定理的图形信号域。我们研究的实际情况,包括采样噪声,主动采样,采样随时间变化的图形拓扑结构。采样在获取样本既昂贵又耗时的应用中起着重要作用,例如节能深度图像传感、MRI成像和社交网络调查。
这项研究将由约克大学的一个有能力和有效率的团队进行,并在日本、台湾、中国、美国和英国建立了良好的国际合作伙伴。预计将与思科(加拿大),NTT(日本)和Kandao(中国)进行工业合作。该计划为理论信号处理和机器学习领域的研究生和博士后提供了极好的专业培训机会,以支持加拿大3D成像和智能传感领域快速增长的就业市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheung, Gene其他文献
Optimizing Distributed Source Coding for Interactive Multiview Video Streaming over Lossy Networks
- DOI:
10.1109/tcsvt.2013.2269019 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:8.4
- 作者:
Liu, Zhi;Cheung, Gene;Ji, Yusheng - 通讯作者:
Ji, Yusheng
Graph Spectral Image Processing
- DOI:
10.1109/jproc.2018.2799702 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:20.6
- 作者:
Cheung, Gene;Magli, Enrico;Ng, Michael K. - 通讯作者:
Ng, Michael K.
Point Cloud Denoising via Feature Graph Laplacian Regularization
- DOI:
10.1109/tip.2020.2969052 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:10.6
- 作者:
Dinesh, Chinthaka;Cheung, Gene;Bajic, Ivan, V - 通讯作者:
Bajic, Ivan, V
Multiresolution Graph Fourier Transform for Compression of Piecewise Smooth Images
- DOI:
10.1109/tip.2014.2378055 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:10.6
- 作者:
Hu, Wei;Cheung, Gene;Au, Oscar C. - 通讯作者:
Au, Oscar C.
Arbitrarily Shaped Motion Prediction for Depth Video Compression Using Arithmetic Edge Coding
- DOI:
10.1109/tip.2014.2353817 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:10.6
- 作者:
Daribo, Ismael;Florencio, Dinei;Cheung, Gene - 通讯作者:
Cheung, Gene
Cheung, Gene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheung, Gene', 18)}}的其他基金
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPIN-2019-06271 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPIN-2019-06271 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Distributed Graph-based Semi-supervised Classifiers: Sampling and Interpolation
基于分布式图的半监督分类器:采样和插值
- 批准号:
551992-2020 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPAS-2019-00110 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPIN-2019-06271 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPAS-2019-00110 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
时-空域联合调制的单像素中红外计算光谱成像
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于近红外光谱技术对无创脊髓电刺激治疗颈髓损伤患者上肢运动功能障碍的脑网络机制研究
- 批准号:2025JJ90312
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多光谱荧光指纹成像的宫颈癌早期
快速无创筛查研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于无人机叶绿素荧光高光谱的水稻田间病害精准诊断与时空智能预测方法研究
- 批准号:MS25C130033
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
全细胞多光谱超分辨显微成像
- 批准号:R25F050009
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向无人机应用的轻小型超表面高光谱成像技术研究
- 批准号:Z25F050017
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于近红外脑功能成像技术探讨如意珍宝片对缺血性脑卒中 认知障碍患者皮层可塑性及疗效预测标志物的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
快速超短回波磁共振肺部成像技术联合免疫组学在肺部肿瘤临床诊断中的研究
- 批准号:JCZRLH202500734
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
空谱混叠特性引导的马赛克光谱目标跟踪方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于功能性近红外光谱技术探讨深部经颅磁刺激对帕金森病步态障碍疗效的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Quantitative OCT-Raman spectral imaging for intra-operative detection of positive margins in breast conserving surgery
定量 OCT-拉曼光谱成像用于保乳手术中阳性切缘的术中检测
- 批准号:
MR/Y008731/1 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Research Grant
Development of an In-Silico Research Framework for Accelerating the Translation of Quantitative Photon-Counting Spectral Imaging to the Clinic
开发计算机模拟研究框架,加速定量光子计数光谱成像向临床的转化
- 批准号:
EP/X04095X/1 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Research Grant
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
- 批准号:
10670648 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
1 mm resolution single-photon spectral imaging of the brain
1 毫米分辨率单光子大脑光谱成像
- 批准号:
10724955 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Next Generation Cone Beam CT with Improved Contrast Resolution and Added Spectral Imaging Functionality
下一代锥束 CT 具有改进的对比度分辨率并增加了光谱成像功能
- 批准号:
10660754 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPIN-2019-06271 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
3D-Spectral Imaging system for thrombus monitoring in ECMO
用于 ECMO 血栓监测的 3D 光谱成像系统
- 批准号:
22K18226 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Plastic packaging, a complete recognition and monitoring system based on AI and fusing RGB-based computer vision with Near Infrared spectral Imaging (NIR SI)
塑料包装,基于人工智能并将基于 RGB 的计算机视觉与近红外光谱成像 (NIR SI) 融合的完整识别和监控系统
- 批准号:
10020954 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative R&D
Multi-spectral and phase contrast X-ray detectors for advanced radiation imaging applications
适用于高级辐射成像应用的多光谱和相衬 X 射线探测器
- 批准号:
RGPIN-2019-04063 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual