Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
基本信息
- 批准号:RGPIN-2020-05738
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Following the digital revolution, everyone is now massively using silicon transistors provided by microelectronics industry: They are the basic element not only of supercomputers, but of all electronic devices that have invaded every aspect of our modern lives (cell phones, PCs, GPS, cars, TV, internet router, ). This revolution of our modern society has brought increased comfort and allowed progress in science.
Improvement of computer chips has been driven by reducing the size of the transistors, but this scaling has now reached a limit where both sensitivity to the exact position of single dopant atoms and quantum effects present major obstacles to further downscaling, calling for the exploration of highly innovative and disruptive approaches to further the development of computing in silicon. Several academic and major industrial players (as Intel) explore ultrascaled transistors at low temperature for quantum computation: The transistor channel then behaves as a quantum dot confining a single electron whose spin (instead of charge) is used to encode quantum information. Yet, the electron spin-coherence time is limited, allowing only for a very limited number of operations before the system decoheres, and the devices are still prone to dopant variability, preventing scalable architecture to emerge.
In this discovery grant (DG) we instead consider nuclear spins of dopants, naturally present in transistors, to encode the quantum information. They have already demonstrated record coherence times, several orders of magnitude larger than the ones of electron spins in quantum dots.
We will first address the key challenge for operating nuclear spin qubits: addressability. This DG will turn the strong sensitivity of ultrascaled transistor to individual dopants into an advantage. The small size of ultrascaled transistors will here be a key advantage by providing a means to focus electric and magnetic fields onto the well isolated nuclear spin.
We will focus our research on dopants with high nuclear spin which provide the necessary redundancy to encode error-corrected logical qubits and allow for electrical manipulation of the spin, an essential asset to scalability.
We will then develop coupling schemes between two nuclear spins located in distant transistors by using a lossless superconducting resonators, mediating the interaction between two nuclear spins via an electron spin.
This DG will provide a way forward for the classical electronics industry by bringing it to use for future quantum computers. Our research will provide the building blocks of a quantum processor: Excellent quantum bits formed by the nuclear spin of a dopant located in the transistor channel. We expect our device to show unprecedented capabilities, such as built-in error correction, long coherence and scalability. This DG has the potential to provide Canada with disruptive devices for the microelectronic industry as well as a cutting edge in the race of quantum computation.
随着数字革命的到来,每个人都在大量使用微电子工业提供的硅晶体管:它们不仅是超级计算机的基本元件,而且是侵入我们现代生活各个方面的所有电子设备(手机,PC,GPS,汽车,电视,互联网路由器)的基本元件。我们现代社会的这场革命带来了更大的舒适度,并允许科学进步。
计算机芯片的改进是通过减小晶体管的尺寸来驱动的,但是这种缩放现在已经达到了极限,其中对单个掺杂剂原子的精确位置的敏感性和量子效应都是进一步缩小的主要障碍,需要探索高度创新和破坏性的方法来进一步发展硅计算。一些学术和主要的工业参与者(如英特尔)在低温下探索超尺度晶体管用于量子计算:晶体管沟道然后表现为量子点,限制单个电子,其自旋(而不是电荷)用于编码量子信息。然而,电子自旋相干时间是有限的,仅允许在系统消球差之前进行非常有限数量的操作,并且器件仍然倾向于掺杂剂可变性,从而阻止可扩展架构的出现。
在这个发现补助金(DG)中,我们转而考虑晶体管中天然存在的掺杂剂的核自旋来编码量子信息。他们已经证明了创纪录的相干时间,比量子点中电子自旋的相干时间大几个数量级。
我们将首先解决操作核自旋量子比特的关键挑战:可寻址性。这种DG将把超尺度晶体管对单个掺杂剂的强烈敏感性变成一种优势。超尺度晶体管的小尺寸将是一个关键的优势,因为它提供了一种将电场和磁场聚焦到隔离良好的核自旋上的方法。
我们将把研究重点放在具有高核自旋的掺杂剂上,这些掺杂剂提供必要的冗余来编码纠错逻辑量子位,并允许对自旋进行电气操纵,这是可扩展性的重要资产。
然后,我们将通过使用无损超导谐振器来开发位于远处晶体管中的两个核自旋之间的耦合方案,通过电子自旋来介导两个核自旋之间的相互作用。
该DG将为经典电子行业提供一条前进的道路,将其用于未来的量子计算机。我们的研究将提供量子处理器的构建模块:由位于晶体管沟道中的掺杂剂的核自旋形成的优秀量子位。我们希望我们的设备能够显示出前所未有的功能,例如内置纠错,长时间一致性和可扩展性。该DG有可能为加拿大提供微电子行业的颠覆性设备,以及量子计算竞赛的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DupontFerrier, Eva其他文献
DupontFerrier, Eva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DupontFerrier, Eva', 18)}}的其他基金
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
- 批准号:
RGPIN-2020-05738 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
- 批准号:
RGPIN-2020-05738 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
- 批准号:
DGECR-2020-00217 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
- 批准号:
2151406 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
- 批准号:
10725550 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
PFI-TT: Highly Efficient, Scalable, and Stable Carbon-based Perovskite Solar Modules
PFI-TT:高效、可扩展且稳定的碳基钙钛矿太阳能模块
- 批准号:
2329871 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure
博士后奖学金:OPP-PRF:通过基于可扩展、基于云的基础设施构建的新型透冰雷达集成来解开冰盖内部和基础过程
- 批准号:
2317927 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant














{{item.name}}会员




