Shimura Varieties, Families of Modular Forms and Analogues over Function Fields

志村品种、模形式族和函数域上的类似物

基本信息

  • 批准号:
    RGPIN-2019-06957
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My research project is at the intersection of geometry and number theory. It aims to study the arithmetic of geometric objects associated to reductive groups, for example Shimura varieties and their analogues over function fields, following the celebrated analogy between number fields and function fields over finite fields. I draw inspiration or direct cues from two influential programs: Kudla's and Langlands' programs in which Shimura varieties play a central role. For illustration, the former links derivatives at special values of Eisenstein series with algebraic cycles on Shimura varieties. Moreover, it also aims at generalizing the Hirzebruch-Zagier theorem on Hilbert modular surfaces, a result that we view as a geometric variant of Langlands' functoriality principle in the case of real quadratic base change. I. p-adic variant of the Kudla program. By analogy, we may replace Eisenstein series with explicit theta lifts of classical modular forms in the context of p-adic families of modular forms; and the classical derivative is replaced by the p-adic derivative of the weight varying p-adically. This is fruitful for GL(2), and gave rise to good Ph.D. thesis problems in recent years. For other reductive groups, a big stumbling block is the current lack of examples of p-adic families of algebraic cycles in higher dimensional Shimura varieties, so new ideas are needed. For the group GSp(4), my project is therefore to establish a p-adic variant of a refined Böcherer conjecture relating the central value of the quadratic twists of the spinor L-function associated to Siegel modular forms of genus two to the Fourier coefficients thereof, viewed as an analogue of a theorem of Waldspurger. This Böcherer conjecture indeed also fits with the Gan-Gross-Prasad global period conjectures. II. Functoriality. A distinct theme which has fascinated me for years is establishing strong versions of functoriality e.g., the Jacquet-Langlands correspondence, by using algebraic cycles living in special or generic fibers of Shimura varieties. In characteristic zero, I plan to generalize parts of the work of Ichino-Prasanna to unitary Shimura varieties. In positive characteristic, I plan to complement the work of Xiao-Zhu by treating certain Siegel modular 3-folds of paramodular level structure that are not amenable to their method based on the geometric Satake isomorphism of Zhu. III. Over function fields: Drinfeld modular varieties. a) My first step in this realm was to establish the existence of families of Drinfeld modular forms for GL(n) with G. Rosso. A second project is to prove an Eichler-Shimura congruence relation for GL(n) with applications to construction of Galois representations. b) A second line of inquiry concerns the analogue of the theory of Stark-Heegner points of Darmon, due to I. Longhi. We are jointly interested in a variant of a Shimura reciprocity conjecture over function fields for GL(2), stimulated by recent work of Darmon-Vonk.
我的研究项目是几何和数论的交叉。它的目的是研究与约化群相关的几何对象的算法,例如函数域上的志村变异及其类似物,遵循著名的数域和有限域上的函数域之间的类比。我从两个有影响力的项目中获得灵感或直接线索:库德拉和朗兰兹的项目,志村品种在其中发挥了核心作用。为了说明这一点,前者在Shimura变体上具有代数循环的Eisenstein级数的特殊值处连接导数。此外,它还旨在推广Hilbert模曲面上的Hirzebruch-Zagier定理,我们将这一结果视为Langlands泛函原理在实二次基变化情况下的几何变体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole, MarcHubert其他文献

Nicole, MarcHubert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole, MarcHubert', 18)}}的其他基金

Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
  • 批准号:
    RGPIN-2019-06957
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
  • 批准号:
    RGPIN-2019-06957
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
PGSB
PGSB
  • 批准号:
    208725-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Postgraduate Scholarships
PGSB/ESB
PGSB/ESB
  • 批准号:
    208725-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Postgraduate Scholarships
PGSA/ESA
PGSA/欧空局
  • 批准号:
    208725-1998
  • 财政年份:
    1999
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Postgraduate Scholarships
PGSA/ESA
PGSA/欧空局
  • 批准号:
    208725-1998
  • 财政年份:
    1998
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Postgraduate Scholarships

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Moduli of higher dimensional varieties and families of hypersurfaces
高维簇和超曲面族的模
  • 批准号:
    2302163
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
  • 批准号:
    RGPIN-2019-06957
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
  • 批准号:
    RGPIN-2019-06957
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Rationality and Irrationality in Families of Varieties
品种族中的理性与非理性
  • 批准号:
    1701659
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Construction and Analyses of the CAFS Database for the Study of Commonality and Varieties of Contemporary Asian Families
CAFS当代亚洲家庭共性与多样性研究数据库的构建与分析
  • 批准号:
    16H03690
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Brauer-Manin obstruction, K3 surfaces and families of twists of abelian varieties
布劳尔-马宁阻塞、K3 表面和阿贝尔变种的扭曲家族
  • 批准号:
    EP/M020266/1
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grant
On families of algebraic varieties admitting unipotent group actions from the viewpoint of Minimal Model Program
从最小模型程序的角度论承认单能群作用的代数簇族
  • 批准号:
    15K04805
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了