Rationality and Irrationality in Families of Varieties
品种族中的理性与非理性
基本信息
- 批准号:1701659
- 负责人:
- 金额:$ 17.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When can we write down all the solutions of a polynomial equation? We seek equations that can be parametrized with rational functions. These are used in mapmaking (stereographic projection), computer graphics, and modeling problems. Indeed, parametrizations are often the most efficient way to render geometric objects as screen images. Mathematicians have developed a rich theory for deciding when such parametrizations are possible. This project will advance this theory.An algebraic variety is rational if it can be obtained from projective space by a sequence of algebraic modifications. Given a family of smooth complex projective varieties, it is difficult to say which members are rational or irrational, or even to formulate qualitative results about the locus of rational members. The PI will use the technique of decomposition of the diagonal, and related tools from deformation theory, Hodge theory and classical geometry, to shed light on this question. The PI and his collaborators have recently shown that rationality is not a deformation invariant property: There are families of smooth complex projective varieties with both rational and irrational members. Despite examples, like cubic fourfolds, that have been extensively studied, there are no cases where the loci of rational and irrational members have been precisely described. The PI will refine and make effective the decomposition of the diagonal technique to clarify which members of a family are irrational - can they be expressed in Hodge-theoretic terms? At the same time, the PI will advance constructive techniques to exhibit rational and unirational parametrizations with prescribed properties.
什么时候我们可以写出一个多项式方程的所有解?我们寻找可以用有理函数参数化的方程。它们用于地图制作(球极投影),计算机图形学和建模问题。实际上,参数化通常是将几何对象渲染为屏幕图像的最有效方法。数学家们已经发展出了丰富的理论来决定何时可以进行这种参数化。一个代数簇是有理的,如果它可以从射影空间通过一系列代数修改得到。给定一个光滑复射影簇族,很难说哪些成员是理性的或非理性的,甚至很难说出关于理性成员轨迹的定性结果。PI将使用对角线分解技术,以及变形理论,霍奇理论和经典几何的相关工具,来阐明这个问题。PI和他的合作者最近证明了合理性不是变形不变的性质:存在光滑复射影簇的家族,其中既有合理的成员,也有不合理的成员。尽管像三次四折这样的例子已经被广泛研究过,但还没有一个例子能精确地描述出理性和非理性成员的轨迹。PI将细化并有效地分解对角线技术,以澄清一个家庭的哪些成员是无理数-他们可以用霍奇理论的术语表示吗?与此同时,PI将推进建设性技术,以展示具有指定属性的有理和单有理参数化。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rationality of complete intersections of two quadrics
两个二次曲线完全交集的有理性
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hassett, Brendan;Tschinkel, Yuri
- 通讯作者:Tschinkel, Yuri
Bijective Cremona transformations of the plane
平面的双射克雷莫纳变换
- DOI:10.1007/s00029-022-00768-0
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Asgarli, Shamil;Lai, Kuan-Wen;Nakahara, Masahiro;Zimmermann, Susanna
- 通讯作者:Zimmermann, Susanna
Rationality of even-dimensional intersections of two real quadrics
两个实二次曲面的偶维交集的有理性
- DOI:10.4171/cmh/529
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Hassett, Brendan;Kollár, János;Tschinkel, Yuri
- 通讯作者:Tschinkel, Yuri
Stable rationality in smooth families of threefolds
平稳三元家庭中的稳定理性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Hassett, Brendan;Kresch, Andrew;Tschinkel, Yuri
- 通讯作者:Tschinkel, Yuri
TORSORS AND STABLE EQUIVARIANT BIRATIONAL GEOMETRY
躯干和稳定的等变双几何
- DOI:10.1017/nmj.2022.29
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:HASSETT, BRENDAN;TSCHINKEL, YURI
- 通讯作者:TSCHINKEL, YURI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Hassett其他文献
Brendan Hassett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Hassett', 18)}}的其他基金
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
1929284 - 财政年份:2020
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
- 批准号:
1551514 - 财政年份:2015
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
1439786 - 财政年份:2015
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
- 批准号:
1401764 - 财政年份:2014
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
- 批准号:
0968349 - 财政年份:2010
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
0931908 - 财政年份:2010
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Birational geometry, symplectic varieties, and moduli spaces
双有理几何、辛簇和模空间
- 批准号:
0901645 - 财政年份:2009
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0554491 - 财政年份:2006
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
CAREER: Algebraic Geometry of Moduli Spaces
职业:模空间的代数几何
- 批准号:
0134259 - 财政年份:2002
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
相似海外基金
From Temporary Rationality to Sustainable Irrationality: Nudging for Lasting Pro-Environmental Behaviour in Hedonic Settings
从暂时理性到可持续非理性:在享乐环境中推动持久的环保行为
- 批准号:
2887610 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
Studentship
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
- 批准号:
2201124 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
- 批准号:
2231958 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Economic Analysis of Personal Data Trust Bank: Institutional Responses to Individual Irrationality and Diversity of Benefits
个人数据信托银行的经济分析:对个体非理性和利益多元化的制度反应
- 批准号:
19K01648 - 财政年份:2019
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the irrationality of Zeta(3)
论Zeta的非理性(3)
- 批准号:
540808-2019 - 财政年份:2019
- 资助金额:
$ 17.94万 - 项目类别:
University Undergraduate Student Research Awards
A new paradigm for rational maintenance focusing on the effect of water attack and the irrationality of remaining un-carbonated depth as the durability indicator
合理维护的新范式,重点关注水侵蚀的影响和剩余非碳酸化深度作为耐久性指标的不合理性
- 批准号:
19H00778 - 财政年份:2019
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Plurality and Irrationality in Biased Moral Thinking
道德思维偏见中的多元化和非理性
- 批准号:
16H05933 - 财政年份:2016
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Origins of Human Irrationality
人类非理性的起源
- 批准号:
20520022 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rationality, Irrationality, and Transition Dynamics in Evolutionary Game Theory
进化博弈论中的理性、非理性和过渡动力学
- 批准号:
0617753 - 财政年份:2006
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Mathematical Sciences: Effective Measures of Irrationality for Algebraic Numbers
数学科学:代数数无理性的有效度量
- 批准号:
9622556 - 财政年份:1996
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant