Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
基本信息
- 批准号:10668430
- 负责人:
- 金额:$ 57.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAccelerationAdoptionAreaArizonaAttentionBiological MarkersBiomedical EngineeringBiopsyBreathingCaliforniaCellsCessation of lifeCharacteristicsCirrhosisClassificationClinicClinicalCompensationDataDetectionDevelopmentDiagnosisDiseaseEarly DiagnosisFatty LiverFatty acid glycerol estersFibrosisFutureGoalsHealth Care CostsHepaticImage EnhancementInflammationInterdisciplinary StudyInterobserver VariabilityIron OverloadJointsLabelLifeLiverLiver FailureLiver FibrosisLiver parenchymaLos AngelesMRI ScansMagnetic ResonanceMagnetic Resonance ElastographyMagnetic Resonance ImagingMapsMeasuresMedical ImagingModelingMonitorMorbidity - disease rateMorphologic artifactsMotionOutcomePatientsPerformancePerfusionPhysicsPrimary carcinoma of the liver cellsProtocols documentationProtonsROC CurveRadialReproducibilityResearchRisk FactorsSampling ErrorsScanningSchemeSignal TransductionStagingTechniquesTechnologyTestingTimeTissuesTrainingUncertaintyUniversitiesValidationWaterchronic liver diseasecontrast enhanceddeep learningdeep learning modeldensitydisease classificationelastographyhepatocyte injuryimage processingimprovedlearning strategyliver biopsyliver inflammationmagnetic resonance imaging biomarkernew technologynon-alcoholic fatty livernon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovel therapeuticsprospectiveprospective testreconstructionsensorsimple steatosistreatment response
项目摘要
PROJECT SUMMARY
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the U.S. and ranges
from simple fatty liver (or non-alcoholic fatty liver, NAFL) to the progressive form, non-alcoholic steatohepatitis
(NASH). About 20-30% of subjects with NAFL develop NASH, which is caused by hepatocyte injury, hepatic
inflammation, and resultant hepatic fibrosis. NASH can lead to life-threatening conditions, but is difficult to
diagnose at early stages. Liver biopsy is the current standard to diagnose NAFL/NASH, but biopsy is invasive,
has associated morbidity, and is limited by sampling errors and inter-observer variability. Many patients
present with later stage NASH, adversely impacting outcomes and healthcare costs, which are estimated at
$32 billion annually in the U.S. Magnetic resonance imaging (MRI), including elastography (MRE), is a
technology that can non-invasively quantify hepatic fat (MRI proton-density fat fraction), iron overload (MRI
R2*), and fibrosis (MRE stiffness). However, current liver MRI is challenged by motion artifacts and incomplete
signal models, which can compromise the accuracy and reproducibility of the quantitative parameters derived
from them. In addition, early tissue changes associated with NASH are not adequately characterized using
conventional MRI. The common requirements of breath-holding and long protocols also severely limit the
adoption of liver MRI in the clinic. Furthermore, the present clinical interpretation of MRI has limited ability to
distinguish NASH from NAFL. The research teams at the University of California Los Angeles, University of
Arizona, and Siemens have been leading the development of motion-robust radial MRI to quantify hepatic
PDFF and R2*, T2 and T1, perfusion, and stiffness. The Siemens team has also developed deep learning
methods for medical image processing and disease detection and classification. In this bioengineering
research partnership project, the multi-disciplinary research team will investigate four aims: (1) Develop a
robust motion compensation framework for free-breathing multi-parametric quantitative radial liver MRI; (2)
Accelerate quantitative liver MRI scans through combined acquisition and joint modeling of multiple
parameters, data undersampling, and deep learning-based reconstruction and quantification; (3) Develop deep
learning models to accurately classify NAFL versus NASH and measure the degree of fibrosis based on
quantitative MRI; (4) Prospectively assess the new quantitative MRI and deep learning technologies for
classifying NAFL versus NASH and measuring fibrosis in patients, with respect to liver biopsy. The new free-
breathing quantitative MRI and deep learning technologies developed in this project will accurately classify
NAFL versus NASH and measure fibrosis using data from the entire liver and thus help to avoid liver biopsy,
allow monitoring of treatment responses, and accelerate the development and implementation of new
therapies.
项目摘要
非酒精性脂肪性肝病(NAFLD)是美国最常见的慢性肝病,
从单纯性脂肪肝(或非酒精性脂肪肝,NAFL)到进行性非酒精性脂肪性肝炎
(NASH)。约20-30%的NAFL受试者发展NASH,其由肝细胞损伤、肝纤维化和肝硬化引起。
炎症和由此产生的肝纤维化。NASH可导致危及生命的疾病,但很难治疗。
早期诊断。肝活检是目前诊断NAFL/NASH的标准,但活检是侵入性的,
具有相关的发病率,并受到抽样误差和观察者间变异性的限制。许多患者
存在晚期NASH,对结局和医疗费用产生不利影响,估计为
在美国,磁共振成像(MRI),包括弹性成像(MRE),每年花费320亿美元。
能够非侵入性量化肝脏脂肪(MRI质子密度脂肪分数)、铁过载(MRI
R2*)和纤维化(MRE僵硬)。然而,目前的肝脏MRI受到运动伪影和不完整性的挑战。
信号模型,这可能会损害定量参数的准确性和再现性
远离他们此外,与NASH相关的早期组织变化没有充分表征,
常规MRI。屏气和长时间协议的共同要求也严重限制了
肝脏MRI的临床应用。此外,目前MRI的临床解释能力有限,
将NASH与NAFL区分开来。加州大学洛杉矶分校的研究小组,
亚利桑那州和西门子一直在领导运动鲁棒性放射状MRI的开发,以量化肝脏
PDFF和R2*、T2和T1、灌注和僵硬度。西门子团队还开发了深度学习
用于医学图像处理和疾病检测和分类的方法。在这个生物工程中
研究伙伴计划,跨专业研究团队将探讨四个目标:(1)开发一个
自由呼吸多参数定量放射状肝脏MRI的鲁棒运动补偿框架;(2)
通过多个图像的联合采集和联合建模加速定量肝脏MRI扫描
参数、数据欠采样和基于深度学习的重建和量化;(3)开发深度
学习模型,以准确分类NAFL与NASH,并基于以下指标测量纤维化程度:
定量MRI;(4)Propioneer评估新的定量MRI和深度学习技术,
将NAFL与NASH进行分类,并测量患者的肝活检纤维化。新自由-
该项目开发的呼吸定量MRI和深度学习技术将准确分类
NAFL与NASH,并使用来自整个肝脏的数据测量纤维化,从而有助于避免肝活检,
允许监测治疗反应,并加快制定和实施新的
治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria I. Altbach其他文献
Maria I. Altbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria I. Altbach', 18)}}的其他基金
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10453927 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10280858 - 财政年份:2021
- 资助金额:
$ 57.49万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10684192 - 财政年份:2021
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10320434 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10524177 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10531585 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10063981 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7261647 - 财政年份:2007
- 资助金额:
$ 57.49万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7595080 - 财政年份:2007
- 资助金额:
$ 57.49万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7391543 - 财政年份:2007
- 资助金额:
$ 57.49万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 57.49万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 57.49万 - 项目类别:
Standard Grant














{{item.name}}会员




