Quantitative MRI and Deep Learning Technologies for Classification of NAFLD

用于 NAFLD 分类的定量 MRI 和深度学习技术

基本信息

  • 批准号:
    10668430
  • 负责人:
  • 金额:
    $ 57.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the U.S. and ranges from simple fatty liver (or non-alcoholic fatty liver, NAFL) to the progressive form, non-alcoholic steatohepatitis (NASH). About 20-30% of subjects with NAFL develop NASH, which is caused by hepatocyte injury, hepatic inflammation, and resultant hepatic fibrosis. NASH can lead to life-threatening conditions, but is difficult to diagnose at early stages. Liver biopsy is the current standard to diagnose NAFL/NASH, but biopsy is invasive, has associated morbidity, and is limited by sampling errors and inter-observer variability. Many patients present with later stage NASH, adversely impacting outcomes and healthcare costs, which are estimated at $32 billion annually in the U.S. Magnetic resonance imaging (MRI), including elastography (MRE), is a technology that can non-invasively quantify hepatic fat (MRI proton-density fat fraction), iron overload (MRI R2*), and fibrosis (MRE stiffness). However, current liver MRI is challenged by motion artifacts and incomplete signal models, which can compromise the accuracy and reproducibility of the quantitative parameters derived from them. In addition, early tissue changes associated with NASH are not adequately characterized using conventional MRI. The common requirements of breath-holding and long protocols also severely limit the adoption of liver MRI in the clinic. Furthermore, the present clinical interpretation of MRI has limited ability to distinguish NASH from NAFL. The research teams at the University of California Los Angeles, University of Arizona, and Siemens have been leading the development of motion-robust radial MRI to quantify hepatic PDFF and R2*, T2 and T1, perfusion, and stiffness. The Siemens team has also developed deep learning methods for medical image processing and disease detection and classification. In this bioengineering research partnership project, the multi-disciplinary research team will investigate four aims: (1) Develop a robust motion compensation framework for free-breathing multi-parametric quantitative radial liver MRI; (2) Accelerate quantitative liver MRI scans through combined acquisition and joint modeling of multiple parameters, data undersampling, and deep learning-based reconstruction and quantification; (3) Develop deep learning models to accurately classify NAFL versus NASH and measure the degree of fibrosis based on quantitative MRI; (4) Prospectively assess the new quantitative MRI and deep learning technologies for classifying NAFL versus NASH and measuring fibrosis in patients, with respect to liver biopsy. The new free- breathing quantitative MRI and deep learning technologies developed in this project will accurately classify NAFL versus NASH and measure fibrosis using data from the entire liver and thus help to avoid liver biopsy, allow monitoring of treatment responses, and accelerate the development and implementation of new therapies.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria I. Altbach其他文献

Maria I. Altbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria I. Altbach', 18)}}的其他基金

Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
  • 批准号:
    10453927
  • 财政年份:
    2022
  • 资助金额:
    $ 57.49万
  • 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
  • 批准号:
    10280858
  • 财政年份:
    2021
  • 资助金额:
    $ 57.49万
  • 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
  • 批准号:
    10684192
  • 财政年份:
    2021
  • 资助金额:
    $ 57.49万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10320434
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10524177
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10531585
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10063981
  • 财政年份:
    2019
  • 资助金额:
    $ 57.49万
  • 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
  • 批准号:
    7261647
  • 财政年份:
    2007
  • 资助金额:
    $ 57.49万
  • 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
  • 批准号:
    7595080
  • 财政年份:
    2007
  • 资助金额:
    $ 57.49万
  • 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
  • 批准号:
    7391543
  • 财政年份:
    2007
  • 资助金额:
    $ 57.49万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 57.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了