Operator Theory and Operator Algebras
算子理论和算子代数
基本信息
- 批准号:RGPIN-2020-03984
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebras exist as an abstract object in mathematics, and one tries to understand their underlying structure and behaviour. A tool that has often proven to be great value in studying abstract algebras is to study their representations as "concrete" algebras of linear transformations on a particular class of vector spaces known as Hilbert spaces. The goal of the proposed research is to explore diverse open questions in operator theory and operator algebras. We mention three explicit objectives below.
First, we seek to determine whether every continuous representation of a total reduction algebra is completely bounded. An operator algebra is said to be a total reduction algebra if, whenever it is represented as an algebra of operators on a Hilbert space, each invariant subspace admits a topological complement which is also invariant for the algebra. This generalises the important notions of amenability and nuclearity of certain algebras of operators. In previous joint work, we have demonstrated that each commutative total reduction algebra is similar to a nuclear C*-algebra, resolving (in the commutative setting) a problem which was open for over thirty years. Our first problem is a logical next step in the study of non-commutative total reduction algebras.
Second, we propose problems from the theory of single linear operators acting on a Hilbert space, transposed to the setting of elements of C*-subalgebras of operators. I am suggesting two new questions (amongst several such problems that I have) of this kind. One of these is the problem of extending a theorem of Specht which describes unitary equivalence of matrices in terms of a comparison of their traces on all words in two non-commuting variables to the setting of C*-algebras. This is joint work with Y. Zhang. We also seek to extend recent results by myself and other co-authors that try to determine the structure of an operator by considering all of its "off-diagonal corners" to the C*-algebra setting.
Third, we explore whether every quasidiagonal operator can be approximated arbitrarily well by algebraic, quasidiagonal operators. Block-diagonal operators are those whose "building blocks" are finite-dimensional matrices, and quasidiagonal operators are those which can be approximated by block-diagonal operators. Quasidiagonality has played a crucial role in the classification of nuclear C*-algebras, and it has proven to be an interesting but extremely subtle property. We have recently obtained a new characterisation of those operators that can be approximated by algebraic, quasidiagonal operators, and we hope that this may lead to an answer to the above question. We also seek to understand when the direct sum of a contractive operator and a normal operator whose spectrum is the unit disc is quasidiagonal.
Each of these questions opens several potential avenues of investigation and training for HQP, introducing them to central areas of research in operator theory.
代数作为数学中的抽象对象而存在,人们试图理解它们的基本结构和行为。一个经常被证明在研究抽象代数方面很有价值的工具是研究它们在一类特定的被称为希尔伯特空间的向量空间上的线性变换的“具体”代数表示。这项研究的目的是探索算子理论和算子代数中的各种开放问题。我们在下面提到三个明确的目标。
首先,我们试图确定全约简代数的每个连续表示是否完全有界。当一个算子代数被表示为Hilbert空间上的一个算子代数时,如果它的每个不变子空间都有一个拓扑补,并且这个拓扑补也是该代数的不变的,则称它为全约简代数。这推广了某些算子代数的适宜性和核性的重要概念。在以前的联合工作中,我们已经证明了每个交换全约简代数类似于核C*-代数,解决了(在交换背景下)一个悬而未决了30多年的问题。我们的第一个问题是研究非交换全约简代数的合乎逻辑的下一步。
其次,我们提出了作用在Hilbert空间上的单线性算子理论中的问题,转置到算子的C*-子代数的元素的设置上。我提出了两个新的问题(在我有的几个这样的问题中)。其中一个问题是将Speht的一个定理推广到C*-代数上,该定理通过比较矩阵在两个非对易变量中所有字上的迹来刻画矩阵的酉等价性。这是与张勇合作的作品。我们还试图推广我和其他合著者最近的结果,这些结果试图通过考虑算子到C*-代数设置的所有“非对角角”来确定算子的结构。
第三,我们探讨了是否每个拟对角算子都能被代数拟对角算子任意好地逼近。块对角线算子是那些“积木”是有限维矩阵的算子,而准对角线算子是那些可以被块对角线算子逼近的算子。拟对角性在核C*-代数的分类中起着至关重要的作用,它已被证明是一个有趣但极其微妙的性质。我们最近得到了这些算子的一个新的刻画,这些算子可以用代数、拟对角线算子来逼近,我们希望这可能会导致上述问题的答案。我们还试图理解压缩算子和谱为单位圆盘的正规算子的直和何时是拟对角的。
这些问题中的每一个都为HQP打开了几个潜在的调查和培训途径,向他们介绍了操作员理论研究的中心领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcoux, Laurent其他文献
Marcoux, Laurent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcoux, Laurent', 18)}}的其他基金
Operator Theory and Operator Algebras
算子理论和算子代数
- 批准号:
RGPIN-2020-03984 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Theory and Operator Algebras
算子理论和算子代数
- 批准号:
RGPIN-2020-03984 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
- 批准号:
RGPIN-2015-06205 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
- 批准号:
RGPIN-2015-06205 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
- 批准号:
RGPIN-2015-06205 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
- 批准号:
RGPIN-2015-06205 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Global and internal structure of operator algebras
算子代数的全局和内部结构
- 批准号:
RGPIN-2015-06205 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Structure and perturbations of operator algebras
算子代数的结构和扰动
- 批准号:
89693-2010 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Structure and perturbations of operator algebras
算子代数的结构和扰动
- 批准号:
89693-2010 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Structure and perturbations of operator algebras
算子代数的结构和扰动
- 批准号:
89693-2010 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Operator Theory and Operator Algebras
算子理论和算子代数
- 批准号:
RGPIN-2020-03984 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Model theory and operator algebras
模型理论和算子代数
- 批准号:
RGPIN-2018-05445 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




