Software Stack for General-Purpose Tensor Processing Units

通用张量处理单元的软件堆栈

基本信息

  • 批准号:
    RGPIN-2020-04006
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The widespread adoption of neural networks in many application areas has created the market conditions for the development of specialized architectural solutions for the faster computation of tensor algebraic operations. These operations are at the core of both training and inference for deep neural networks. The industry has responded with a diverse offering of architectural solutions. Known as Tensor Processing Units (TPUs), Neural Network Processors, Deep-Learning Accelerators, Artificial Intelligence Chips, such architectural solutions are often based on a multi-processing-unit topology called systolic arrays and have the common goal of accelerating multi-dimensional array computations. A key desirable feature is to increase the reuse of data that has been brought from memory into the processing units. The premise of this innovative research program is that the architectural constructs developed for TPUs can also be deployed for general-purpose numerical computing applications. Similarly to what happened in the evolution of GPU design, the broader utilization of TPUs will lead to the evolution of these accelerators. This evolution will, in turn, make them also better-suited for neural networks themselves. While many programming solutions -- languages and libraries -- and compilers exist for TPUs, the development of a software stack for neural processing is still incipient. Recently Chris Lattner, the creator fo the widely used LLVM compilation infrastructure, has proposed the Multi-Level Intermediate Representation (MLIR) that has the potential of enabling more efficient and more effective optimizations at a higher level in the compilation process. Google has an R&D team working on the development of the MLIR infrastructure that is needed for its adoption. However, all the initial effort is focused on a replacement solution for TensorFlow, the current software stack offered by Google. The proposed research expands the software stack for TPUs by creating compilation paths from traditional High-Performance Computing (HPC) programming languages, such as C or Fortran, potentially augmented with OpenMP directives, for execution in TPUs. Main goals: 1. Develop program analysis to discover program segments (loop nests) in numerical computing that can benefit from execution in the architectural blocks available in TPUs. 2. Create profitability analysis that can be used to estimate the performance, and power consumption, when a computation is executed in a TPU. These profitability analysis will also be used to determine which code transformations could be applied to the code to improve its performance in a TPU. 3. Develop compile-time code transformations that can make a given loop next more suitable for execution in TPU hardware. 4. Extend existing IRs to better improve the mapping of numerical computations to TPUs.
神经网络在许多应用领域的广泛采用为开发专门的架构解决方案创造了市场条件,以实现张量代数运算的更快计算。这些操作是深度神经网络训练和推理的核心。业界已经做出了回应,提供了多样化的架构解决方案。被称为张量处理单元(TPU),神经网络处理器,深度学习加速器,人工智能芯片,这种架构解决方案通常基于称为脉动阵列的多处理单元拓扑结构,并且具有加速多维阵列计算的共同目标。一个关键的期望特性是增加已经从存储器带入处理单元的数据的重用。 这项创新研究计划的前提是,为TPU开发的架构结构也可以部署为通用数值计算应用程序。与GPU设计的演变过程类似,TPU的更广泛利用将导致这些加速器的演变。反过来,这种进化也将使它们更适合神经网络本身。虽然TPU存在许多编程解决方案(语言和库)和编译器,但用于神经处理的软件栈的开发仍处于初期阶段。最近,广泛使用的LLVM编译基础设施的创建者Chris Lattner提出了多级中间表示(MLIR),该表示具有在编译过程中在更高级别上实现更高效和更有效优化的潜力。谷歌有一个研发团队致力于开发MLIR基础设施,这是采用MLIR所需要的。然而,所有最初的努力都集中在TensorFlow的替代解决方案上,TensorFlow是Google目前提供的软件堆栈。 拟议的研究通过从传统的高性能计算(HPC)编程语言(如C或Fortran)创建编译路径,扩展了TPU的软件堆栈,可能会增加OpenMP指令,用于在TPU中执行。 主要目标: 1.开发程序分析,以发现数值计算中的程序段(循环嵌套),这些程序段可以从TPU中可用的架构块中的执行中受益。 2.创建盈利能力分析,可用于评估在TPU中执行计算时的性能和功耗。这些盈利能力分析还将用于确定哪些代码转换可以应用于代码,以提高TPU中的性能。 3.开发编译时代码转换,使给定的循环更适合在TPU硬件中执行。 4.扩展现有IR,以更好地改进数值计算到TPU的映射。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amaral, Jose其他文献

Integration of TMR Sensors in Silicon Microneedles for Magnetic Measurements of Neurons
  • DOI:
    10.1109/tmag.2013.2239274
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Amaral, Jose;Pinto, Vitor;Freitas, Paulo P.
  • 通讯作者:
    Freitas, Paulo P.
Strategies for meeting EU end-of-life vehicle reuse/recovery targets
  • DOI:
    10.1162/jiec.2006.10.4.77
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Ferrao, Paulo;Nazareth, Pedro;Amaral, Jose
  • 通讯作者:
    Amaral, Jose
Measuring brain activity with magnetoresistive sensors integrated in micromachined probe needles
OPTIMIZATION AND INTEGRATION OF MAGNETORESISTIVE SENSORS
  • DOI:
    10.1142/s2010324711000070
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Freitas, Paulo;Cardoso, Susana;Amaral, Jose
  • 通讯作者:
    Amaral, Jose

Amaral, Jose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amaral, Jose', 18)}}的其他基金

Software Stack for General-Purpose Tensor Processing Units
通用张量处理单元的软件堆栈
  • 批准号:
    RGPIN-2020-04006
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Code Generation for Specialized Hardware-Supported Functional Units
专用硬件支持的功能单元的代码生成
  • 批准号:
    537432-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Software Stack for General-Purpose Tensor Processing Units
通用张量处理单元的软件堆栈
  • 批准号:
    RGPIN-2020-04006
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Code Generation for Specialized Hardware-Supported Functional Units
专用硬件支持的功能单元的代码生成
  • 批准号:
    537432-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Design of Programming Languages and Computing Performance
编程语言设计与计算性能
  • 批准号:
    RGPIN-2015-06506
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Code Generation for Specialized Hardware-Supported Functional Units
专用硬件支持的功能单元的代码生成
  • 批准号:
    537432-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Design of Programming Languages and Computing Performance
编程语言设计与计算性能
  • 批准号:
    RGPIN-2015-06506
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Programming Languages and Computing Performance
编程语言设计与计算性能
  • 批准号:
    RGPIN-2015-06506
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Runtime Binary Re-Compilation for Enterprise-Scale Computing
用于企业级计算的运行时二进制重新编译
  • 批准号:
    469056-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants
Runtime Binary Re-Compilation for Enterprise-Scale Computing
用于企业级计算的运行时二进制重新编译
  • 批准号:
    469056-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: Rethinking System Stack for the Load-Store I/O Era
职业:重新思考加载-存储 I/O 时代的系统堆栈
  • 批准号:
    2339901
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Relaxed Semantics Across the Data Analytics Stack
整个数据分析堆栈的宽松语义
  • 批准号:
    EP/X029174/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Research Grant
CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
  • 批准号:
    2238548
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
  • 批准号:
    2304304
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
A novel mixed-reality gaming technology stack enabling the creation of unique and affordable digital-physical connected games, coupled with the prototyping of a new game IP designed to showcase its affordances.
新颖的混合现实游戏技术堆栈能够创建独特且价格实惠的数字物理连接游戏,并结合旨在展示其功能的新游戏 IP 原型设计。
  • 批准号:
    10069574
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
  • 批准号:
    2425711
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Full-stack automation for reliable and reproducible MRS of brain cancer
全栈自动化实现可靠且可重复的脑癌 MRS
  • 批准号:
    10632895
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了