Integrated Machine Learning and Control for Synthesis of Dexterous Manipulation Skills

集成机器学习和控制以综合灵巧的操作技能

基本信息

  • 批准号:
    RGPIN-2020-04746
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The rise of collaborative robots promises a new era that robots can coexist with humans in our daily lives, be it home or workplace. Recent strides in machine learning have quickly transformed the way we design autonomous systems even under conditions previously considered too complex to replace humans (e.g. driving a car or playing the game of go). While these data-driven tools offer promises in knowledge-based reasoning such as analyzing image or audio data, it is still a question how such techniques can be transferred to the complex motor control of mechanical devices such as robotic arm and hand that are governed by principles of mechanics. Human extremities are vastly superior to artificial counterparts; this is not in the power and accuracy in executing the pre-programmed task repeatedly, but rather to the richness, adaptability and the sophistication of skilled movements for complex and unpredictable tasks. While we do not yet understand the mechanisms of human sensorimotor coordination, we agree undeniably that human motor skills are mastered through years of practice and learning. The PI has established a leading program focused on the application of advanced sensory data processing and model-based control approaches to enhancing the functionalities of mechanical manipulators. Building on this expertise, the main goal of the proposed research program is to combine recent AI (artificial intelligence) and machine learning techniques with traditional model-based control strategies to endow robotic arms and hands with human-like manipulation skills and adaptability. Specifically, this research aims 1) to develop multi-modal training strategies for semantic perception of various objects and features associated with manipulation tasks, 2) to investigate inverse reinforcement learning (RL) strategies to understand mechanisms behind goal-directed manipulation tasks by human experts, 3) to integrate a priori knowledge on dynamic models of the robot and the environment to enhance the performance of RL, and 4) to develop new simulated training environments as well as a hierarchical RL structure for efficient learning. Successful application of machine learning to physical systems holds enormous potential for breakthroughs in the way we design and operate mechatronic systems by allowing them to seamlessly operate within complex and uncertain environments while constantly interacting with humans and unknown objects. The practical value of the new knowledge and fundamental technologies to be generated through this research program will have a substantial impact on a wide range of industrial and public sectors including Canada's manufacturing, logistics, supply chain, and health care industries. Research tasks associated with this program cut across different disciplines of mechanics, robotics, control theory, signal processing, AI and machine learning, thereby providing ideal training environments to our next generation of highly qualified personnel.
协作机器人的兴起预示着一个新的时代,机器人可以在我们的日常生活中与人类共存,无论是在家里还是在工作场所。机器学习的最新进展迅速改变了我们设计自主系统的方式,即使在以前被认为过于复杂而无法取代人类的情况下(例如驾驶汽车或玩围棋)。虽然这些数据驱动工具在基于知识的推理(如分析图像或音频数据)中提供了希望,但如何将这些技术转移到机械设备(如机械臂和机械手)的复杂电机控制中仍然是一个问题。人类的四肢比人造的四肢有着上级的优势;这并不在于重复执行预先编程的任务的能力和准确性,而是在于复杂和不可预测的任务的丰富性、适应性和熟练动作的复杂性。虽然我们还不了解人类感觉运动协调的机制,但我们一致认为,人类的运动技能是通过多年的实践和学习掌握的。PI已经建立了一个领先的计划,专注于应用先进的传感数据处理和基于模型的控制方法来增强机械操作器的功能。在此专业知识的基础上,拟议研究计划的主要目标是将联合收割机最新的AI(人工智能)和机器学习技术与传统的基于模型的控制策略相结合,以赋予机器人手臂和手类似人类的操作技能和适应性。具体来说,本研究的目的是:1)开发多模态训练策略,用于与操作任务相关的各种对象和特征的语义感知,2)研究反向强化学习(RL)策略,以理解人类专家目标导向操作任务背后的机制,3)整合机器人和环境动态模型的先验知识,以提高RL的性能,以及4)开发新的模拟训练环境以及用于有效学习的分层RL结构。机器学习在物理系统中的成功应用为我们设计和操作机电一体化系统的方式带来了巨大的突破潜力,使它们能够在复杂和不确定的环境中无缝操作,同时不断与人类和未知物体进行交互。通过这项研究计划产生的新知识和基础技术的实用价值将对包括加拿大制造业,物流,供应链和医疗保健行业在内的广泛的工业和公共部门产生重大影响。与该计划相关的研究任务跨越了机械,机器人,控制理论,信号处理,人工智能和机器学习的不同学科,从而为我们的下一代高素质人才提供理想的培训环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeon, Soo其他文献

Design and optimization of a cam-actuated electrohydraulic brake system
Benefits of acceleration measurement in velocity estimation and motion control
  • DOI:
    10.1016/j.conengprac.2005.10.004
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Jeon, Soo;Tomizuka, Masayoshi
  • 通讯作者:
    Tomizuka, Masayoshi
Model Predictive Control for integrated lateral stability, traction/braking control, and rollover prevention of electric vehicles
  • DOI:
    10.1080/00423114.2019.1585557
  • 发表时间:
    2020-01-02
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Ataei, Mansour;Khajepour, Amir;Jeon, Soo
  • 通讯作者:
    Jeon, Soo
Rollover stabilities of three-wheeled vehicles including road configuration effects
A general rollover index for tripped and un-tripped rollovers on flat and sloped roads

Jeon, Soo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeon, Soo', 18)}}的其他基金

Integrated Machine Learning and Control for Synthesis of Dexterous Manipulation Skills
集成机器学习和控制以综合灵巧的操作技能
  • 批准号:
    RGPIN-2020-04746
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Machine Learning and Control for Synthesis of Dexterous Manipulation Skills
集成机器学习和控制以综合灵巧的操作技能
  • 批准号:
    RGPIN-2020-04746
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
MOST - Task-relevant perception and control for human-oriented operation of mobile manipulators in semi-structured environments
MOST - 半结构化环境中移动机械手人性化操作的任务相关感知和控制
  • 批准号:
    506987-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Strategic Projects - Group
Multimodal Sensory Integration and Control for Interactive Dexterous In-Hand Object Manipulation
用于交互式灵巧手持物体操纵的多模态感觉集成和控制
  • 批准号:
    RGPIN-2015-05273
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
MOST - Task-relevant perception and control for human-oriented operation of mobile manipulators in**semi-structured environments
MOST - 半结构化环境中移动机械手的人性化操作的任务相关感知和控制
  • 批准号:
    506987-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Strategic Projects - Group
Multimodal Sensory Integration and Control for Interactive Dexterous In-Hand Object Manipulation
用于交互式灵巧手持物体操纵的多模态感觉集成和控制
  • 批准号:
    RGPIN-2015-05273
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Multimodal Sensory Integration and Control for Interactive Dexterous In-Hand Object Manipulation
用于交互式灵巧手持物体操纵的多模态感觉集成和控制
  • 批准号:
    477918-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Multimodal Sensory Integration and Control for Interactive Dexterous In-Hand Object Manipulation
用于交互式灵巧手持物体操纵的多模态感觉集成和控制
  • 批准号:
    RGPIN-2015-05273
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
A Wrist Module for the Upgrade of a Light-Weight Robotic Arm
用于轻型机械臂升级的腕部模块
  • 批准号:
    RTI-2018-00414
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Tools and Instruments
MOST - Task-relevant perception and control for human-oriented operation of mobile manipulators in semi-structured environments
MOST - 半结构化环境中移动机械手人性化操作的任务相关感知和控制
  • 批准号:
    506987-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
RII Track-4: NSF: An Integrated Multiphysics Machine Learning Modeling and Experimental Framework for Optimizing Micro-Needle Patches
RII Track-4:NSF:用于优化微针贴片的集成多物理场机器学习建模和实验框架
  • 批准号:
    2229555
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
  • 批准号:
    10699137
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
  • 批准号:
    2322713
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Exploring the significance of the spatial field from integrated DInSAR+GNSS time series for machine learning and volcano early warning applications
博士后奖学金:EAR-PF:探索集成 DInSAR GNSS 时间序列的空间场对于机器学习和火山预警应用的重要性
  • 批准号:
    2304871
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Fellowship Award
Conference: Support for Early Career Participants in Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP)
会议:为机器学习集成物理建模不确定性量化会议 (UQ-MLIP) 的早期职业参与者提供支持
  • 批准号:
    2227959
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Development of a Novel Fitness Bar Integrated with Artificial Intelligent (A.I.) and Machine Learning (M.L.)
开发结合人工智能 (A.I.) 和机器学习 (M.L.) 的新型健身棒
  • 批准号:
    571160-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Applied Research and Development Grants - Level 2
An integrated microfluidic, metal oxide semiconductor gas sensor combined with machine learning optimization for multiplexed greenhouse gas detection
集成微流体金属氧化物半导体气体传感器与机器学习优化相结合,用于多重温室气体检测
  • 批准号:
    577115-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Alliance Grants
Integrated Agent-Based Simulation, Machine Learning, and Optimization of the Energy-Food-Water Nexus
基于代理的集成模拟、机器学习和能量-食物-水关系的优化
  • 批准号:
    557180-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Integrated Machine Learning and Control for Synthesis of Dexterous Manipulation Skills
集成机器学习和控制以综合灵巧的操作技能
  • 批准号:
    RGPIN-2020-04746
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了