Characterizing brain function changes during neuroplasticity within distributed neural systems

表征分布式神经系统中神经可塑性过程中大脑功能的变化

基本信息

  • 批准号:
    RGPIN-2020-05419
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Neuroimaging studies of human brain function are increasingly representing brain activity using the concept of functional connectomes (i.e., a neural network dedicated to a specific function). These distributed functional networks emerge from the brain's extensive underlying structural networks and can be dynamically modified through biological processes that underlie the concept of neuroplasticity (i.e., the brain's innate ability to reorganize neural networks). Since 2004, my NSERC-funded neuroimaging research has focused on characterizing brain activity across distributed neural systems during sensory, perceptual, motor, and cognitive processing - with the goal to improve the ability to non-invasively image brain function and translate this knowledge into advanced evaluation of brain function/dysfunction. Notably, this program has expanded the reach of functional neuroimaging from specialized processing regions in gray matter (GM: the nodes within a network) to functionally active connections in white matter (WM: the connections between nodes). It has tackled the historically controversial challenge of detecting WM activation using functional magnetic resonance imaging (fMRI). As WM connections comprise almost 50% of total neural tissue, the work addressed a major historical blindspot. At the network level, direct measures of active WM connections provide critical information. In parallel, we have begun longitudinal monitoring studies to characterize brain activity changes over time. This work focuses on spatial and temporal changes as a measure of neuroplasticity using fMRI and magneto-/electro- encephalography (M/EEG). These two central research lines have recently been integrated into unified experiments that combine distributed functional networks with longitudinal monitoring of neuroplasticity - the central focus of this application. The current NSERC application will develop deeper investigations into the relationship between functional connectomes and neuroplasticity. The research will focus on functional connectomes involved in motor learning using task-dependent and resting state analyses. My team will examine activation changes over time using a longitudinal study of behavioural motor performance improvements. Common patterns of network level change will be identified first in WM and then in GM. The central hypothesis predicts that common underlying mechanisms govern dynamic network changes consistently between task-based and resting state evaluations. Specifically, based on preliminary results, we predict that neuroplasticity in WM leads to reduced variability in hemodynamic responses - independent of a task-based or resting state functional connectome analysis. Exploratory analyses will also extend this approach to M/EEG to examine correlates in functional connectivity. Knowledge of the underlying patterns for dynamic change can in turn be utilized to improve the evaluation of brain function across various applications.
Neuroimaging studies of human brain function are increasingly representing brain activity using the concept of functional connectomes (i.e., a neural network dedicated to a specific function). These distributed functional networks emerge from the brain's extensive underlying structural networks and can be dynamically modified through biological processes that underlie the concept of neuroplasticity (i.e., the brain's innate ability to reorganize neural networks). Since 2004, my NSERC-funded neuroimaging research has focused on characterizing brain activity across distributed neural systems during sensory, perceptual, motor, and cognitive processing - with the goal to improve the ability to non-invasively image brain function and translate this knowledge into advanced evaluation of brain function/dysfunction. Notably, this program has expanded the reach of functional neuroimaging from specialized processing regions in gray matter (GM: the nodes within a network) to functionally active connections in white matter (WM: the connections between nodes). It has tackled the historically controversial challenge of detecting WM activation using functional magnetic resonance imaging (fMRI). As WM connections comprise almost 50% of total neural tissue, the work addressed a major historical blindspot. At the network level, direct measures of active WM connections provide critical information. In parallel, we have begun longitudinal monitoring studies to characterize brain activity changes over time. This work focuses on spatial and temporal changes as a measure of neuroplasticity using fMRI and magneto-/electro- encephalography (M/EEG). These two central research lines have recently been integrated into unified experiments that combine distributed functional networks with longitudinal monitoring of neuroplasticity - the central focus of this application. The current NSERC application will develop deeper investigations into the relationship between functional connectomes and neuroplasticity. The research will focus on functional connectomes involved in motor learning using task-dependent and resting state analyses. My team will examine activation changes over time using a longitudinal study of behavioural motor performance improvements. Common patterns of network level change will be identified first in WM and then in GM. The central hypothesis predicts that common underlying mechanisms govern dynamic network changes consistently between task-based and resting state evaluations. Specifically, based on preliminary results, we predict that neuroplasticity in WM leads to reduced variability in hemodynamic responses - independent of a task-based or resting state functional connectome analysis. Exploratory analyses will also extend this approach to M/EEG to examine correlates in functional connectivity. Knowledge of the underlying patterns for dynamic change can in turn be utilized to improve the evaluation of brain function across various applications.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DArcy, Ryan其他文献

DArcy, Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DArcy, Ryan', 18)}}的其他基金

Characterizing brain function changes during neuroplasticity within distributed neural systems
表征分布式神经系统中神经可塑性过程中大脑功能的变化
  • 批准号:
    RGPIN-2020-05419
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing brain function changes during neuroplasticity within distributed neural systems
表征分布式神经系统中神经可塑性过程中大脑功能的变化
  • 批准号:
    RGPIN-2020-05419
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the characterization of activity in white matter systems: links within distributed neural networks
改善白质系统活动的表征:分布式神经网络内的链接
  • 批准号:
    RGPIN-2015-04961
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the characterization of activity in white matter systems: links within distributed neural networks
改善白质系统活动的表征:分布式神经网络内的链接
  • 批准号:
    RGPIN-2015-04961
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of virtual reality cognitive training tasks using EEG
使用脑电图开发虚拟现实认知训练任务
  • 批准号:
    533151-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Further development of support for handling neuroimaging data within Safe Software's FME
进一步开发对 Safe Software 的 FME 中处理神经影像数据的支持
  • 批准号:
    537195-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Plus Grants Program
Improving the characterization of activity in white matter systems: links within distributed neural networks
改善白质系统活动的表征:分布式神经网络内的链接
  • 批准号:
    RGPIN-2015-04961
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of support for handling neuroimaging data within Safe Software's fme
开发对 Safe Software 的 fme 内处理神经影像数据的支持
  • 批准号:
    519759-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Improving the characterization of activity in white matter systems: links within distributed neural networks
改善白质系统活动的表征:分布式神经网络内的链接
  • 批准号:
    RGPIN-2015-04961
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Target Tape technology in multimodal neuroimaging registration
将目标磁带技术集成到多模式神经影像配准中
  • 批准号:
    484657-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
  • 批准号:
    82371317
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
KLK10调控胶质—血管耦合与对话促缺血性卒中后血脑屏障修复的机制
  • 批准号:
    82371465
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
  • 批准号:
    81801389
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
  • 批准号:
    81101046
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
精神分裂症进程中非对称性活跃脑结构改变的磁共振研究
  • 批准号:
    81171275
  • 批准年份:
    2011
  • 资助金额:
    14.0 万元
  • 项目类别:
    面上项目
精神分裂症脑网络异常的影像遗传学研究
  • 批准号:
    81000582
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
盲人脑网络可塑性的磁共振影像研究
  • 批准号:
    30900476
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
中枢神经系统Stat3对AQP4表达的调节作用及作用机制研究
  • 批准号:
    30800355
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterizing Entorhinal Cortex Circuit Dysfunction in an APOE Mouse Model of Chemotherapy-Induced Cognitive Impairment
化疗引起认知障碍的 APOE 小鼠模型中内嗅皮层回路功能障碍的特征
  • 批准号:
    10677984
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
L-type Calcium Channel SNP rs1006737: characterizing the genetic risks in MUD (Methamphetamine Use Disorder)
L 型钙通道 SNP rs1006737:表征 MUD(甲基苯丙胺使用障碍)的遗传风险
  • 批准号:
    10668210
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing the connectivity and molecular composition of opioid-sensitive neurons in the periaqueductal gray
导水管周围灰质阿片敏感神经元的连接和分子组成特征
  • 批准号:
    10605415
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing neurocognitive symptoms in older adults with primary hyperparathyroidism
原发性甲状旁腺功能亢进症老年人的神经认知症状特征
  • 批准号:
    10725231
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing the mechanistic basis for sex-dimorphic responses to retinoic acid signaling in the developing brain
表征发育中大脑对视黄酸信号的性别二态性反应的机制基础
  • 批准号:
    10607935
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing Retinal Tissue Oxygenation, Structure, and Function in Alzheimer's Disease
阿尔茨海默氏病视网膜组织氧合、结构和功能的表征
  • 批准号:
    10557293
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing subsets of HIV-infected and uninfected CD14+CD16+ monocytes that contribute to neuropathogenesis
表征导致神经发病的 HIV 感染和未感染 CD14 CD16 单核细胞亚群
  • 批准号:
    10619848
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing Alzheimer's Risk in Retired Night Shift Workers: Cognitive Function, Brain Volume, and Brain Bioenergetics
退休夜班工人患阿尔茨海默病的风险特征:认知功能、脑容量和脑生物能学
  • 批准号:
    10350125
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing the Relationship between Uterine Activity and Placental Function Across Pregnancy with MRI
用 MRI 表征妊娠期子宫活动与胎盘功能之间的关系
  • 批准号:
    10535116
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Characterizing persistent subclinical neurobehavioral effects of COVID-19 in a diverse urban population
表征 COVID-19 对不同城市人群的持续亚临床神经行为影响
  • 批准号:
    10445841
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了