Rigorous results on Spin Glasses

旋转玻璃的严格结果

基本信息

  • 批准号:
    RGPIN-2020-07009
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The main questions in this proposal originate from the models that were introduced by the physicists about forty years ago with the goal of understanding the unusual magnetic behaviour of certain metal alloys, called spin glasses. The study of these models produced many new ideas that found unexpected applications beyond their original motivation. One of the most interesting applications was to the area of optimization problems. To give one example, let us consider a large group of people where any two are either friends or enemies, and let us divide them into two groups attempting to keep friends together and separate the enemies. This can not always be done perfectly, because if two of your friends are enemies then either you lose one of your friends or they will stay enemies inside your group; these are called frustrated triples. This problem of dividing the group in an optimal way is known to be very difficult to solve in general (imagine a situation with numerous frustrated triples), but there are many interesting questions one can ask about what happens in a typical situation. For example, one can ask how optimal solutions typically look like, or how other almost optimal solutions are related to the optimal ones. The physicists were very successful in applying the ideas developed in the study of spin glasses to various optimization problems arising in mathematics (traveling salesman problem, graph partitioning), computer science (random satisfiability of Boolean formulas) and biology (modelling brain activity), and their main contributions can be roughly divided into two categories. On the one hand, they have developed a deep and sophisticated theoretical understanding of what happens in a typical situation in these optimization problems (where a typical situation is modelled by choosing the parameters of the problem randomly). On the other hand, having this picture in mind allowed them to come up with efficient algorithms for solving some of these problems in practice. The main focus of this proposal is on the first category, namely, theoretical picture in one family of models -- the so called diluted spin glass models, which includes a modification of the above problem of splitting a group of people into two groups in the case when each person interacts with only a small number of other people. The main goal of the proposal is to find a rigorous mathematical explanation for the picture proposed by the physicists in these models. In particular, the proposal attempts to prove the famous Mézard--Parisi formula for the free energy, as well as describe the structure of the Gibbs measure in these models (where the main open problem is called reproducibility hypothesis). Just like the work of the physicists was based on the ideas developed in the context of the models of spin glasses, this proposal builds upon a significant progress achieved in recent years in the rigorous mathematical theory behind the original spin glass models.
这项提议中的主要问题源于物理学家们在大约40年前提出的模型,目的是理解某些被称为自旋玻璃的金属合金的不寻常的磁性行为。对这些模型的研究产生了许多新的想法,这些想法发现了意想不到的应用,超出了它们最初的动机。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panchenko, Dmitriy其他文献

Panchenko, Dmitriy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panchenko, Dmitriy', 18)}}的其他基金

Rigorous results on Spin Glasses
旋转玻璃的严格结果
  • 批准号:
    RGPIN-2020-07009
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous results on Spin Glasses
旋转玻璃的严格结果
  • 批准号:
    RGPIN-2020-07009
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Moral Experience of Families in the Context of Trisomy 13 and 18: Presenting the Results of a Scoping Review
13 号和 18 号三体症背景下家庭的道德体验:介绍范围界定审查的结果
  • 批准号:
    495166
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Emulsion digital PCR
乳化数字PCR
  • 批准号:
    10699081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
  • 批准号:
    10601968
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Targeting lysine acetyltransferase MOF/KAT8 in lung cancer
靶向赖氨酸乙酰转移酶 MOF/KAT8 在肺癌中的作用
  • 批准号:
    10601761
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Decoding innate immune signaling in normal and myelodysplastic hematopoiesis
解码正常和骨髓增生异常造血中的先天免疫信号
  • 批准号:
    10571337
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
  • 批准号:
    10721233
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了