Peaked and rogue waves in nonlinear partial differential equations

非线性偏微分方程中的尖峰波和异常波

基本信息

  • 批准号:
    RGPIN-2020-07049
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My research program is built on analysis of nonlinear wave propagation, which occurs commonly in many physical applications. This classical area of applied mathematics and mathematical physics is related to many recent developments in the theory of nonlinear partial and lattice differential equations and has inspired discoveries of new tools of harmonic and functional analysis, dynamical system theory, asymptotic methods and scientific computations. My group has developed cutting edge research on the analysis of the existence and stability of the principal forms of nonlinear waves including solitary waves, periodic waves, breathers, vortices, domain walls, and helical structures. These solutions of nonlinear differential equations model physical phenomena as diverse as water waves in oceans, coherent structures in fluid flows, trapped states in atomic condensates, and wave transmission over branched photonic crystals. The proposal is based on the recent breakthroughs in the very different problems such as 1) proof of linear instability of peaked periodic waves in the presence of rotation; 2) algebraic construction of rogue waves occurring on the background of periodic patterns; 3) complete classification of standing waves on quantum graphs in the large mass limit; 4) analysis of nonlinear stability of trapped states with degeneracy. The long term objective of my research is to develop new tools of analysis for solving mathematical problems involving peaked and rogue waves in nonlinear partial differential equations. The nonlinear equations are defined on free space, in confining potentials, and on metric graphs representing thin waveguides. These problems are of an academic nature but nevertheless have arisen in modeling of real physical phenomena and can be observed in nature with physical experiments. The short-term objectives in the next 5 years will be focused on the following main themes: 1) analysis of nonlinear instability of peaked waves with respect to peaked perturbations; 2) construction of non-isolated rogue waves and analysis of soliton gas turbulence; 3) oscillation theory and asymptotic stability of standing waves on unbounded quantum graphs; 4) study of critical dimensions for bound states in multi-dimensional harmonic potentials. The anticipated impact and significance of the proposed research is in the areas of nonlinear mathematics and physics. Progress on the diverse problems such as characterizing instability of peaked waves in fluids, formation of rogue waves on the surface of ocean, transmission of solitary waves in branched waveguides, and trapped atomic states in multi-dimensional potentials will contribute to new knowledge about our world and will offer new methods of solutions to open new frontiers in analysis of PDEs, dynamical systems, and nonlinear wave propagation. Practical applications of my research and new physical experiments are expected in the area of water waves and optical pulses in waveguides and lasers.
我的研究项目是建立在对非线性波传播的分析的基础上的,这种情况在许多情况下都很常见 物理应用程序。应用数学和数学物理的这一经典领域与 非线性偏微分方程组和格点微分方程组理论的许多最新发展,并已 对调和和泛函分析、动力系统理论、渐近性等新工具的启发发现 方法和科学计算。 我的团队已经开发出尖端技术 关于委托人的存在性和稳定性分析的研究 非线性波的形式,包括孤波、周期波、呼吸、旋涡、磁区壁和螺旋波 结构。这些非线性微分方程解模拟了各种物理现象,如海洋中的水波,流体流动中的相干结构, 原子凝聚态中的囚禁态,以及波在分支光子晶体上的传输。 这项提议是基于最近在非常不同的问题上取得的突破,例如 1)尖峰周期波线性不稳定性的证明 轮换; 2)周期模式背景下的流氓波的代数构造; 3)大质量量子图上驻波的完全分类 限制; 4)简并囚禁态的非线性稳定性分析。 从长远来看 我的研究目标是开发解决数学问题的新的分析工具 非线性偏微分方程组中的尖峰波和流浪波问题 方程式。非线性方程定义在自由空间、约束势和表示薄层的度量图上 波导板。这些问题是学术性质的,但在现实的建模中出现了 物理现象,并可以通过物理实验在自然界中观察到。 今后5年的短期目标将集中在以下主题上: 1)峰值波相对于峰值扰动的非线性不稳定性分析; 2)非孤立流浪波的构造和孤子气体湍流的分析; 3)无界量子图上驻波的振荡理论和渐近稳定性; 4)多维谐振势中束缚态的临界尺寸研究。 拟议研究的预期影响和意义是在非线性数学和物理领域。流体中尖峰波的不稳定性表征、海洋表面流浪波的形成、分支波导中孤立波的传输、多维势中原子态的捕获等问题的研究进展将有助于我们对世界有新的认识,并将为偏微分方程组、动力学系统和非线性波传播的分析开辟新的前沿。我的研究和新的物理实验有望在波导和激光中的水波和光脉冲领域得到实际应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pelinovsky, Dmitry其他文献

Global Well-Posedness of the Short-Pulse and Sine-Gordon Equations in Energy Space
Rigorous justification of the short-pulse equation
WAVE BREAKING IN THE OSTROVSKY-HUNTER EQUATION
  • DOI:
    10.1137/09075799x
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Liu, Yue;Pelinovsky, Dmitry;Sakovich, Anton
  • 通讯作者:
    Sakovich, Anton
GLOBAL EXISTENCE OF SMALL-NORM SOLUTIONS IN THE REDUCED OSTROVSKY EQUATION
Convergence of the Adomian Decomposition Method for Initial-Value Problems

Pelinovsky, Dmitry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pelinovsky, Dmitry', 18)}}的其他基金

Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
  • 批准号:
    RGPIN-2020-07049
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
  • 批准号:
    RGPIN-2020-07049
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
  • 批准号:
    RGPIN-2014-05652
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
  • 批准号:
    RGPIN-2014-05652
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
  • 批准号:
    RGPIN-2014-05652
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
  • 批准号:
    RGPIN-2014-05652
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
  • 批准号:
    RGPIN-2014-05652
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
  • 批准号:
    RGPIN-2014-05652
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Evolution of localized modes in nonlinear dispersive equations
非线性色散方程中局域模态的演化
  • 批准号:
    238931-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Evolution of localized modes in nonlinear dispersive equations
非线性色散方程中局域模态的演化
  • 批准号:
    238931-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Experimental proof of coastal rogue waves
沿海狂浪的实验证明
  • 批准号:
    22KK0057
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Non-Gaussian statistics and optical rogue waves in resonant nonlinear systems
谐振非线性系统中的非高斯统计和光学流氓波
  • 批准号:
    RGPIN-2018-05497
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
  • 批准号:
    RGPIN-2020-07049
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204782
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
  • 批准号:
    RGPIN-2020-07049
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Gaussian statistics and optical rogue waves in resonant nonlinear systems
谐振非线性系统中的非高斯统计和光学流氓波
  • 批准号:
    RGPIN-2018-05497
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Explaining Rogue Waves in the Ocean Through Observations and Modelling
通过观测和建模解释海洋中的异常波浪
  • 批准号:
    2595418
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Studentship
Non-Gaussian statistics and optical rogue waves in resonant nonlinear systems
谐振非线性系统中的非高斯统计和光学流氓波
  • 批准号:
    RGPIN-2018-05497
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Quest for Mechanical Rogue Waves in One-dimensional Discrete Lattices
寻找一维离散晶格中的机械流氓波
  • 批准号:
    1933729
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了