Non-invasive 4D thoracic imaging infrastructure to support decision-making in the management of lung diseases in intensive care units (ICU).

无创 4D 胸部成像基础设施,支持重症监护病房 (ICU) 肺部疾病管理决策。

基本信息

  • 批准号:
    RTI-2021-00595
  • 负责人:
  • 金额:
    $ 10.93万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Digital image acquisition systems have evolved rapidly and become widespread in the medical field. These systems generate large amounts of multi-dimensional data, particularly when several imaging systems are used together (i.e. multimodal medical imaging). This creates a significant gap between the size of the datasets coming from these systems, on one hand, and the availability of software tools that allow clinical users to extract and visualize the most relevant information, on the other hand. In that context, new tools are needed to better display multimodal images in order to reduce the mental load for the user. Therefore, the objective of the research programs that the requested equipment will support is to develop and validate a non-invasive 4D (three-dimensional space + time) imaging system to see all the areas of the chest cavity in real time. The medical aim of this research is to help physicians to detect the worsening of lung function prior to respiratory failure in critically ill patients. The system's performance will be evaluated on patients at high risk of lung function deterioration, such as in a respiratory disease pandemic where pulmonary complications are common. The purpose of breathing is to provide oxygen and remove the CO2 produced by the body. This gas exchange is frequently impaired in patients admitted to intensive care units (ICUs) when their lung function deteriorates, which can happen for various reasons. Currently, there is no imaging system allowing clinicians in the ICU to see how the different areas of the thoracic (chest) cavity are working, continuously and in real time. If they could have this information, it would allow them to detect oncoming problems, before the patient's breathing condition deteriorates. The flow of visual information would also guide doctors in their diagnosis and help them manage cases of respiratory failure, for which they must administer drugs and use other treatments. To that end, we will develop a multimodal platform that will merge the information from three different systems: 1) a range-sensing (RGB-D) camera, 2) an infra-red camera, and 3) an Electrical Impedance Tomography (EIT) device. The RGB-D camera (which we already have) will monitor the thoracic volume over time using 4D reconstruction of the chest surface. The infra-red camera can measure precise temperature changes and, combined with the RGB-D camera, will allow us to “see under the blanket" and more precisely measure the patient's thoracic volume. EIT is a radiation-free medical device that can continuously monitor the ventilation distribution in the lungs. It will provide dynamic information on the lung volumes. The requested equipment (EIT and infrared camera) is essential to conduct our research and will lead to knowledge advancements in computational modeling from multimodal images and innovative visualization tools providing immediate feedback to users during their interactions with complex datasets.
数字图像采集系统发展迅速,在医疗领域得到广泛应用。这些系统产生大量多维数据,特别是当几个成像系统一起使用时(即多模式医学成像)。一方面,来自这些系统的数据集的大小与允许临床用户提取和可视化最相关信息的软件工具的可用性之间存在显著差距。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheriet, Farida其他文献

Mapping Pulsatile Optic Nerve Head Deformation Using OCT.
使用OCT映射脉动视神经头部变形。
  • DOI:
    10.1016/j.xops.2022.100205
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Solano, Marisse Masis;Richer, Emmanuelle;Cheriet, Farida;Lesk, Mark R.;Costantino, Santiago
  • 通讯作者:
    Costantino, Santiago
Reliability of trunk shape measurements based on 3-D surface reconstructions
  • DOI:
    10.1007/s00586-007-0457-0
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Pazos, Valerie;Cheriet, Farida;Labelle, Hubert
  • 通讯作者:
    Labelle, Hubert
Articulated Spine Models for 3-D Reconstruction From Partial Radiographic Data
  • DOI:
    10.1109/tbme.2008.2001125
  • 发表时间:
    2008-11-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Boisvert, Jonathan;Cheriet, Farida;Ayache, Nicholas
  • 通讯作者:
    Ayache, Nicholas
Joint segmentation and classification of retinal arteries/veins from fundus images
  • DOI:
    10.1016/j.artmed.2019.02.004
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Girard, Fantin;Kavalec, Conrad;Cheriet, Farida
  • 通讯作者:
    Cheriet, Farida
Semiautomatic Detection of Scoliotic Rib Borders From Posteroanterior Chest Radiographs

Cheriet, Farida的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheriet, Farida', 18)}}的其他基金

Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2021
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2020
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Modified version of CNN-based object detection for omnidirectional vision sensors
用于全向视觉传感器的基于 CNN 的目标检测的修改版本
  • 批准号:
    544090-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Engage Grants Program
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2018
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Anatomically Embedded Representations for Medical Image Registration in Clinical Applications
临床应用中医学图像配准的解剖嵌入式表示
  • 批准号:
    222860-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Anatomically Embedded Representations for Medical Image Registration in Clinical Applications
临床应用中医学图像配准的解剖嵌入式表示
  • 批准号:
    222860-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual
Classification automatique des images de fond d'oeil
图像自动分类
  • 批准号:
    484993-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Collaborative Research and Development Grants
Anatomically Embedded Representations for Medical Image Registration in Clinical Applications
临床应用中医学图像配准的解剖嵌入式表示
  • 批准号:
    222860-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Branched Amphiphilic Peptide Capsules (BAPCs) for the delivery of lethal dsRNA into invasive organisms
事业:分支两亲肽胶囊 (BAPC) 用于将致命的 dsRNA 传递到入侵生物体中
  • 批准号:
    2340070
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Continuing Grant
SBIR Phase II: A mesh-free, sling-free, minimally invasive treatment for stress urinary incontinence in women
SBIR II 期:无网、无吊带的微创治疗女性压力性尿失禁
  • 批准号:
    2233106
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Cooperative Agreement
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    EU-Funded
SUPer-REsolution non-invasive Muscle measurements with miniaturised magnetIc SEnsors (SUPREMISE)
使用微型磁性传感器 (SUPREMISE) 进行超分辨率非侵入性肌肉测量
  • 批准号:
    EP/X031950/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Fellowship
I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
  • 批准号:
    2402381
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
Creating a non-invasive window into the mind
创建一个非侵入性的心灵窗口
  • 批准号:
    DP240102254
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Discovery Projects
Non-Invasive Testing device for Anaemia (NITA)
非侵入性贫血检测设备 (NITA)
  • 批准号:
    MR/Y503356/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Research Grant
Bionic sensors for non-invasive health monitoring
用于无创健康监测的仿生传感器
  • 批准号:
    MR/Y003802/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Fellowship
SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
  • 批准号:
    2321906
  • 财政年份:
    2024
  • 资助金额:
    $ 10.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了