Fast and reliable ASSR measurement for hearing loss detection
用于听力损失检测的快速可靠的 ASSR 测量
基本信息
- 批准号:570568-2021
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hearing loss is the most common sensory disability in the world. It is also one of the most fast-growing and prevailing chronic disorders in Canada. Advanced testing for hearing sense in Canadian hospitals employs brainwaves (or EEG) to record Auditory Evoked Potentials (AEPs) under auditory stimulation which is considered the best approach to assess hearing ability in newborns and adults. One auditory response that can be analyzed using EEG for hearing assessment is the Auditory Steady-State Response (ASSR) signal measurement. In this research application, we propose a set of advanced signal processing techniques based on temporal and spatial filtering techniques that can improve the ASSR signal quality over spontaneous EEG and myogenic artifacts. These techniques were found effective in non-medical applications including Brain-Computer Interface (BCI), using steady-state visual evoked potentials and biometrics. However, to date, the superiority of these techniques over standard ASSR signal processing have not been evaluated in medical applications and especially in ASSR diagnosis. Our main objective is to investigate the feasibility of these signal processing methodologies to improve the reliability of hearing assessment and objective threshold estimation using ASSR within clinically viable time. Furthermore, in addition to hearing assessment, the feasibility and effectiveness of developed technologies can be explored in a number of recently emerging applications. That, is ASSR estimation in biometric human recognition and ASSR estimation in monitoring of mental health conditions such as concussion and dementia progression.The COVID-19 pandemic has put many parts of society into extreme isolation, including adults, older members of society and the very elderly. Hearing loss can often go undetected when people are not socially active or are isolated. This can have a negative impact on the availability of people to reintegrate into the post-pandemic workforce. Undetected hearing loss can limit performance at all levels of the workforce and can be simply remedied if detection is improved with great benefits to the Canadian society and economy.
听力损失是世界上最常见的感觉障碍。它也是加拿大增长最快和最普遍的慢性疾病之一。加拿大医院的高级听力测试采用脑电波(或EEG)记录听觉刺激下的听觉诱发电位(AEP),这被认为是评估新生儿和成人听力的最佳方法。可以使用EEG分析以用于听力评估的一种听觉响应是听觉稳态响应(ASSR)信号测量。在这项研究应用中,我们提出了一套先进的信号处理技术的基础上的时间和空间滤波技术,可以提高ASSR信号质量自发EEG和肌源性文物。这些技术被发现在非医疗应用中有效,包括脑机接口(BCI),使用稳态视觉诱发电位和生物识别。然而,到目前为止,这些技术的优越性超过标准的ASSR信号处理尚未评估在医疗应用中,特别是在ASSR诊断。我们的主要目标是调查这些信号处理方法的可行性,以提高可靠性的听力评估和客观的阈值估计使用ASSR在临床可行的时间。此外,除了听力评估之外,可以在一些最近出现的应用中探索所开发技术的可行性和有效性。这是生物识别人类识别中的ASSR估计和监测脑震荡和痴呆症进展等精神健康状况中的ASSR估计。COVID-19大流行使社会的许多部分陷入极端孤立,包括成年人,社会的老年人和非常年长的人。当人们不活跃于社交活动或与世隔绝时,听力损失通常不会被发现。这可能会对人们重返大流行后劳动力队伍的可用性产生负面影响。未被发现的听力损失会限制各级劳动力的表现,如果提高检测能力,可以简单地补救,这对加拿大社会和经济有很大的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HATZINAKOS, DIMITRIOS其他文献
HATZINAKOS, DIMITRIOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
- 批准号:
2336356 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Research Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
- 批准号:
10078083 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative R&D