The ReBuild Initiative - A nexus for research into data-driven retrofit solutions for energy-efficient buildings
重建计划 - 研究数据驱动的节能建筑改造解决方案的纽带
基本信息
- 批准号:566285-2021
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reducing energy use in existing buildings is key to meeting climate change mitigation goals. Climate change disproportionally affects disadvantaged peoples, and retrofits can improve their housing conditions. Better computer models of how our buildings are performing are needed to give robust design solutions and evidence-based policies. Data-driven methods that use machine-learning have great potential as our buildings provide lots of data, but little is currently used for reducing emissions. These can be combined with existing models based on physics, and also used to speed up the simulation process.The ReBuild Initiative is an industry-government-academia consortium that will undertake 16 research activities that encompass the breadth and complexity of the challenge, each co-designed with a partner organization to address their needs. It is important to find synergies between the methods used by professionals, service providers and policy-makers. These collaborations will help refine and address key questions in data-driven building energy retrofits such as: Which machine learning methods are effective in tackling each problem? How can these methods integrate with existing simulation-based approaches? What datasets are needed to power them, and how can they be evaluated? How should these developments be leveraged and deployed to deliver improved tools, analyses and policy measures?The goals of the Initiative are: (a) to develop new methods and tools for building energy retrofit decisions using data-driven approaches, (b) to facilitate the exchange of knowledge, data and software between academia, industry and government partners, and (c) to influence future policy and regulation in Canada regarding existing buildings. Web-based tools will be tested and applied by partners to improve profitability, market penetration and efficiency. It will inform the development of a code for existing buildings and other policies at municipal, provincial and federal levels. It will also train a cohort of skilled workers with expertise to apply cutting-edge methods to pressing problems in industry, government and academia.
减少现有建筑物的能源使用是实现减缓气候变化目标的关键。气候变化对弱势群体造成不利影响,改造可以改善他们的住房条件。我们需要更好的建筑物性能计算机模型,以提供稳健的设计解决方案和基于证据的政策。使用机器学习的数据驱动方法具有巨大的潜力,因为我们的建筑物提供了大量数据,但目前很少用于减少排放。这些模型可以与现有的基于物理的模型相结合,也可以用于加速模拟过程。重建计划是一个由工业、政府和学术界组成的联盟,将开展16项研究活动,涵盖挑战的广度和复杂性,每项研究活动都与合作伙伴组织共同设计,以满足他们的需求。必须在专业人员、服务提供者和决策者所使用的方法之间找到协同增效作用。这些合作将有助于完善和解决数据驱动的建筑能源改造中的关键问题,例如:哪些机器学习方法可以有效地解决每个问题?这些方法如何与现有的基于模拟的方法相结合?需要哪些数据集来支持它们,以及如何评估它们?应如何利用和部署这些发展,以提供更好的工具、分析和政策措施?该倡议的目标是:(a)开发新的方法和工具,利用数据驱动的方法作出建筑物能源改造决定;(B)促进学术界、工业界和政府伙伴之间的知识、数据和软件交流;(c)影响加拿大今后有关现有建筑物的政策和法规。合作伙伴将测试和应用基于网络的工具,以提高盈利能力、市场渗透率和效率。它将为市、省和联邦各级现有建筑物法规和其他政策的制定提供信息。它还将培训一批具有专业知识的技术工人,以应用尖端方法解决工业,政府和学术界的紧迫问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evins, Ralph其他文献
A Conditional Generative adversarial Network for energy use in multiple buildings using scarce data
- DOI:
10.1016/j.egyai.2021.100087 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:0
- 作者:
Baasch, Gaby;Rousseau, Guillaume;Evins, Ralph - 通讯作者:
Evins, Ralph
Evins, Ralph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evins, Ralph', 18)}}的其他基金
Surrogate modelling of building energy use
建筑能源使用的替代模型
- 批准号:
RGPIN-2022-03830 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
- 批准号:
543534-2019 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Collaborative Research and Development Grants
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
- 批准号:
543534-2019 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Collaborative Research and Development Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
- 批准号:
543534-2019 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Collaborative Research and Development Grants
Sensor-driven analysis of retrofit options for low energy buildings**
低能耗建筑改造方案的传感器驱动分析**
- 批准号:
536485-2018 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Engage Grants Program
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2018
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
SmartEMS: Applying machine learning in building energy management systems
SmartEMS:将机器学习应用于建筑能源管理系统
- 批准号:
514444-2017 - 财政年份:2017
- 资助金额:
$ 10.5万 - 项目类别:
Engage Grants Program
相似海外基金
Conference: Materials Genome Initiative (MGI) Biennial Principal Investigator Workshop; Washington, DC; July 30-31, 2024
会议:材料基因组计划(MGI)两年一次的首席研究员研讨会;
- 批准号:
2422384 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
CAREER: Constraining the high-latitude ocean carbon cycle: Leveraging the Ocean Observatories Initiative (OOI) Global Arrays as marine biogeochemical time series
职业:限制高纬度海洋碳循环:利用海洋观测计划(OOI)全球阵列作为海洋生物地球化学时间序列
- 批准号:
2338450 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Director of Functional Genomics Initiative
功能基因组学计划主任
- 批准号:
MR/Z000068/1 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Research Grant
ART: Illinois Tech Forward Initiative
ART:伊利诺伊州科技前沿计划
- 批准号:
2331458 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Cooperative Agreement
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
REU-Site: URI Plastic Initiative at the University of Rhode Island
REU-Site:罗德岛大学 URI 塑料倡议
- 批准号:
2348968 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Conference: Summer Geometry Initiative 2024
会议:2024 年夏季几何倡议
- 批准号:
2419933 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Conference: Two-Year College Data Science Initiative (TYCDSI) Workshop
会议:两年大学数据科学计划 (TYCDSI) 研讨会
- 批准号:
2402290 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant