SmartEMS: Applying machine learning in building energy management systems

SmartEMS:将机器学习应用于建筑能源管理系统

基本信息

  • 批准号:
    514444-2017
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The SmartEMS project will develop data analysis and machine learning approaches suitable for incorporationin non-residential building energy management systems, and test them in real buildings. Dramatic recentimprovements in the power of machine learning have made it possible to train and deploy such algorithms tosolve practical challenges. Complex energy systems in buildings present many such challenges, from set-pointoptimization to predictive control. SES Inc. has the capabilities and client-base to take advantage of this.There are two core approaches: offline learning from data, and real-time predictive control. The former willidentify underlying trends and areas of concern by analysis of operational data; the latter will develop and trainmachine learning controllers that will improve operation based on weather predictions. The two together candeliver a highly flexible, robust solution.SmartEMS will use open-source systems and protocols (VOLTTRON, BACnet) that have been successfullyused by SES Inc. on previous projects. Open-source state of the art machine learning libraries based in Python(scikit-learn, TensorFlow) will be used, along with other Python-based data analysis and visualisation libraries.Remotely accessible interface hardware (bare-bones PCs; Raspberry Pi) will be deployed in 3 test buildings(one university campus and two clients of SES Inc.). Cloud computing from CANARIE will be used forcomputationally intensive parts of the process.The output will be a commercially deployable solution based on the latest academic research; parts of this willalso be released as open-source. This will form the basis for an ongoing collaboration. The concept hassignificant potential to improve energy use, emissions and comfort in commercial buildings.
SmartEMS项目将开发适用于非住宅建筑能源管理系统的数据分析和机器学习方法,并在真实的建筑中进行测试。机器学习能力的巨大进步使得训练和部署此类算法来解决实际挑战成为可能。建筑物中的复杂能源系统提出了许多这样的挑战,从设定点优化到预测控制。SES Inc.有两种核心方法:从数据中离线学习和实时预测控制。前者将通过分析运行数据来确定潜在趋势和关注领域;后者将开发和培训机器学习控制器,以根据天气预测改善运行。两者结合起来可以提供高度灵活、强大的解决方案。SmartEMS将使用SES Inc.已成功使用的开源系统和协议(VOLTTRON、BACnet)。以前的项目。将使用基于Python的开源最先进的机器学习库(scikit-learn,TensorFlow),沿着其他基于Python的数据分析和可视化库。远程访问的接口硬件(基本PC; Raspberry Pi)将部署在3个测试建筑中(一个大学校园和SES Inc.的两个客户)。CANARIE的云计算将用于该过程的计算密集型部分。其输出将是基于最新学术研究的可商业部署的解决方案;其中部分内容也将作为开源发布。这将成为持续合作的基础。这一概念在改善商业建筑的能源使用、排放和舒适度方面具有巨大的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evins, Ralph其他文献

A Conditional Generative adversarial Network for energy use in multiple buildings using scarce data
  • DOI:
    10.1016/j.egyai.2021.100087
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baasch, Gaby;Rousseau, Guillaume;Evins, Ralph
  • 通讯作者:
    Evins, Ralph

Evins, Ralph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evins, Ralph', 18)}}的其他基金

Surrogate modelling of building energy use
建筑能源使用的替代模型
  • 批准号:
    RGPIN-2022-03830
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
The ReBuild Initiative - A nexus for research into data-driven retrofit solutions for energy-efficient buildings
重建计划 - 研究数据驱动的节能建筑改造解决方案的纽带
  • 批准号:
    566285-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
  • 批准号:
    543534-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Sensor-driven analysis of retrofit options for low energy buildings**
低能耗建筑改造方案的传感器驱动分析**
  • 批准号:
    536485-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
  • 批准号:
    RGPIN-2017-04455
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Applying Spatial Covariance to Understand Human Variation in Genetic Disease
应用空间协方差来了解遗传疾病的人类变异
  • 批准号:
    10734426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
  • 批准号:
    10619943
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
  • 批准号:
    10080979
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307150
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307151
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
What works, for whom? Applying novel precision medicine methods to people with mental illness in the justice system.
什么有效,对谁有效?
  • 批准号:
    10723566
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
  • 批准号:
    10731500
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Applying Machine Learning to local structure in metallic systems for structural applications
将机器学习应用于金属系统的局部结构以实现结构应用
  • 批准号:
    2903293
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复​​已删除的信息
  • 批准号:
    2317563
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Developing a blood fatty acid-based algorithm as an early predictor of insulin resistance: Applying machine learning to harmonized data from prospective cohort studies
开发基于血液脂肪酸的算法作为胰岛素抵抗的早期预测因子:将机器学习应用于前瞻性队列研究的统一数据
  • 批准号:
    10696711
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了