Sensor-driven analysis of retrofit options for low energy buildings**
低能耗建筑改造方案的传感器驱动分析**
基本信息
- 批准号:536485-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy assessment and providing retrofit options of existing buildings is currently costly and time consuming. This project aims to use the internet of things and big data to provide a cheaper way to find optimal retrofit options for residential buildings. A web of cheap sensors based on internet of things technology will be tested by monitoring environmental conditions in a 1870s era residential building. The data obtained from the sensors is stored in a database that will be analysed by machine learning algorithms trained using the available sensor data. The goal is that, when sufficient data is obtained, predictions can be made about optimal retrofit options for the monitored building. To validate this newly developed pathway traditional physics-based models will also be used. These provide a well-understood analysis method for existing buildings, but take significant time and expertise to develop. If these models are not properly calibrated, the error in energy consumption predictions may be in the order of 100%. The machine learning methods proposed require large amounts of sensor data but less time and expertise to develop. Furthermore, they provide accurate predictions of building performance based on available historical data. When these methods are fully developed, simple sensor data from residential buildings can be used to provide tailored retrofit options as a fast and inexpensive alternative to conventional physics-based modelling methods. This will provide quick retrofit solutions for the existing building stock. Improving building efficiency will help Canada meet its emissions goals and prevent further catastrophic climate change impacts.
能源评估和提供现有建筑物的改造方案目前是昂贵和耗时的。该项目旨在利用物联网和大数据提供一种更便宜的方式来寻找住宅建筑的最佳改造方案。一个基于物联网技术的廉价传感器网络将通过监测19世纪70年代住宅楼的环境条件进行测试。从传感器获得的数据存储在数据库中,该数据库将通过使用可用传感器数据训练的机器学习算法进行分析。目标是,当获得足够的数据时,可以预测被监测建筑物的最佳改造方案。为了验证这一新开发的途径,还将使用传统的基于物理学的模型。这些为现有建筑物提供了一种易于理解的分析方法,但需要大量的时间和专业知识来开发。如果这些模型没有被适当地校准,则能量消耗预测的误差可能在100%的量级。提出的机器学习方法需要大量的传感器数据,但开发时间和专业知识较少。此外,它们还可以根据现有的历史数据对建筑性能进行准确预测。当这些方法得到充分发展时,来自住宅建筑的简单传感器数据可用于提供量身定制的改造方案,作为传统基于物理的建模方法的快速和廉价的替代方案。这将为现有建筑提供快速改造解决方案。提高建筑效率将有助于加拿大实现其排放目标,并防止进一步的灾难性气候变化影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evins, Ralph其他文献
A Conditional Generative adversarial Network for energy use in multiple buildings using scarce data
- DOI:
10.1016/j.egyai.2021.100087 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:0
- 作者:
Baasch, Gaby;Rousseau, Guillaume;Evins, Ralph - 通讯作者:
Evins, Ralph
Evins, Ralph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evins, Ralph', 18)}}的其他基金
Surrogate modelling of building energy use
建筑能源使用的替代模型
- 批准号:
RGPIN-2022-03830 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
- 批准号:
543534-2019 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
The ReBuild Initiative - A nexus for research into data-driven retrofit solutions for energy-efficient buildings
重建计划 - 研究数据驱动的节能建筑改造解决方案的纽带
- 批准号:
566285-2021 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
- 批准号:
543534-2019 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Using surrogate models in the integrated design process for high-performance buildings
在高性能建筑的集成设计过程中使用替代模型
- 批准号:
543534-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Modular Optimization and Simulation of Energy Systems
能源系统的模块化优化与仿真
- 批准号:
RGPIN-2017-04455 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
SmartEMS: Applying machine learning in building energy management systems
SmartEMS:将机器学习应用于建筑能源管理系统
- 批准号:
514444-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
- 批准号:
24K17032 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Neural circuitry of predictions and prediction errors in the auditory system
听觉系统中预测和预测误差的神经回路
- 批准号:
23K14298 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别: