Paths-Sums: Unitarity and Extraction

路径和:幺正性和提取

基本信息

  • 批准号:
    564677-2021
  • 负责人:
  • 金额:
    $ 0.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要--Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BennettGibbs, Owen其他文献

BennettGibbs, Owen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BennettGibbs, Owen', 18)}}的其他基金

Quantum circuit extraction from the Sum-over-Paths formalism
从路径求和形式中提取量子电路
  • 批准号:
    565041-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Mathematical Methods in Quantum Circuit Theory
量子电路理论中的数学方法
  • 批准号:
    552328-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.44万
  • 项目类别:
    University Undergraduate Student Research Awards

相似海外基金

Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
  • 批准号:
    2349828
  • 财政年份:
    2024
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
Ubiquity of Kloosterman sums in Number Theory and Beyond
克洛斯特曼求和在数论及其他领域中无处不在
  • 批准号:
    DP230100534
  • 财政年份:
    2023
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Projects
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
  • 批准号:
    EP/V055755/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Research Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
  • 批准号:
    2212924
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
  • 批准号:
    RGPIN-2020-06032
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
New techniques for exponential sums over low degree polynomials
低次多项式指数和的新技术
  • 批准号:
    DE220100859
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Early Career Researcher Award
Anatomy and Physiology of Numbers -Statistics of Primes and Aliquot Sums-
数字的解剖学和生理学-素数和等分和的统计-
  • 批准号:
    21K13772
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了