Enabling Extreme Fast-Charging of Lithium-ion Batteries with Covalently-Joined Electrode Architectures - Market Assessment

通过共价连接电极架构实现锂离子电池的极快充电 - 市场评估

基本信息

  • 批准号:
    571260-2022
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

To slow and eliminate the catastrophic consequences of climate change, reducing our emissions of greenhouse gases is vital. Since 1999, the transportation sector in Canada has been emitting in excess of 700 megatonnes of carbon dioxide every year. This represents 27% of all emissions in the country. Zero-emission, battery electric vehicles (BEVs) provide a solution to this problem. However, the long recharging times of batteries (about one hour and a half) is one of the biggest obstacles in the way of mass adoption of BEVs by the public. Researchers at the University of Waterloo have recently disclosed a novel, chemical joining strategy that drastically improves fast-charging capabilities of both traditional and next-generation batteries. Here, we propose to develop this new electrode fabrication technique to enable otherwise traditional lithium-ion batteries to charge in minutes instead of hours. This discovery relies on making Li-ion battery electrode more conductive by physically joining all parts of the electrodes together from the active material used to store the energy to the metal foils that are used to connect the battery to the outside circuit to be powered. This electrode-making technique is designed to be integrated seamlessly into existing battery production lines that are present in industry today. This novel way of making electrodes also furthers our knowledge of engineering of covalent bonding of heterogeneous (different) materials such as carbon particles and metals with processes that require the least amount of energy possible. The transition to BEVs concerns not only Canada but the rest of the world in the multi-trillion-dollar transportation industry. Countries such as the United States, China and all countries of the European union having pledged to phase out their fleet of fossil fuel burning vehicles in the coming decade. Therefore, developing fast-charging battery technologies in Canada gives us a chance to advance the country's prominence and competitiveness on the world-stage as a pole of technological innovation as well as help finding solutions to reduce our dependency on oil.
为了减慢气候变化的灾难性后果,减少我们的温室气体排放至关重要。自1999年以来,加拿大的运输部门每年散发出超过700兆龙的二氧化碳。这占该国所有排放量的27%。零发射电池电动汽车(BEV)为此问题提供了解决方案。但是,电池的漫长充电时间(大约一个半小时)是公众大规模采用BEV的最大障碍之一。滑铁卢大学的研究人员最近披露了一种新颖的化学连接策略,该策略可大大提高传统电池和下一代电池的快速充电能力。在这里,我们建议开发这种新的电极制造技术,以使原本传统的锂离子电池在几分钟内电量而不是数小时内充电。该发现依赖于通过将电极的所有部分从用于存储能量的活性材料到用于将电池连接到电源的外部电路的金属铝箔的活性材料的所有部分来使锂离子电池电极更具导电性。该电极制造技术旨在将无缝集成到当今行业中存在的现有电池生产线中。使电极的这种新颖方法还进一步推进了我们对异质(不同)材料共价键合的工程知识,例如碳颗粒和金属,其过程需要最少的能量。向BEVS的过渡不仅涉及加拿大,而且涉及世界其他地区的数万亿美元运输行​​业。美国,中国和欧盟所有国家等国家都承诺在未来十年中逐步淘汰其化石燃料燃烧车队。因此,在加拿大开发快速充电的电池技术使我们有机会提高该国作为技术创新杆的世界阶段的突出和竞争力,并有助于找到解决方案以减少我们对石油的依赖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pope, Michael其他文献

Iron deficiency in heart failure: Efficacy and safety of intravenous iron therapy
  • DOI:
    10.1111/1755-5922.12301
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kang, Chan-Keat;Pope, Michael;Kalra, Paul R.
  • 通讯作者:
    Kalra, Paul R.
Spectral Analysis for Resonant Soft X-Ray Scattering Enables Measurement of Interfacial Width in 3D Organic Nanostructures
  • DOI:
    10.1103/physrevlett.119.167801
  • 发表时间:
    2017-10-19
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ferron, Thomas;Pope, Michael;Collins, Brian A.
  • 通讯作者:
    Collins, Brian A.
Scurvy: An elusive diagnosis.
  • DOI:
    10.1002/ccr3.7418
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Pope, Michael;Elder, Joshua
  • 通讯作者:
    Elder, Joshua
Parametric study of laser-induced graphene conductive traces and their application as flexible heaters

Pope, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pope, Michael', 18)}}的其他基金

Advanced Graphene-Based Nanocomposites through Guided Interfacial Assembly
通过引导界面组装的先进石墨烯基纳米复合材料
  • 批准号:
    RGPIN-2015-06600
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
All-solid-state silicon anodes for next-generation Li-ion batteries
用于下一代锂离子电池的全固态硅阳极
  • 批准号:
    561228-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Identifying failure modes and engineering membrane inter-layers for stabilizing ultra-thin and water selective graphene oxide layers
识别失效模式和工程膜夹层以稳定超薄和水选择性氧化石墨烯层
  • 批准号:
    557076-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Advanced Graphene-Based Nanocomposites through Guided Interfacial Assembly
通过引导界面组装的先进石墨烯基纳米复合材料
  • 批准号:
    RGPIN-2015-06600
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Deployable Electrochemical Methane Sensors for Pipeline Monitoring and Greenhouse Gas Mitigation
用于管道监测和温室气体减排的可部署电化学甲烷传感器
  • 批准号:
    539430-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Collaborative Research and Development Grants
Development of robust cathodes for pressurized, gravity-driven zinc-air batteries
开发用于加压重力驱动锌空气电池的坚固阴极
  • 批准号:
    560197-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
COVID-19: Indoor light-activated, self-cleaning surfaces for continuous decontamination of transparent PPE
COVID-19:室内光激活自清洁表面,用于连续净化透明个人防护装备
  • 批准号:
    551991-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Advanced Graphene-Based Nanocomposites through Guided Interfacial Assembly
通过引导界面组装的先进石墨烯基纳米复合材料
  • 批准号:
    RGPIN-2015-06600
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Deployable Electrochemical Methane Sensors for Pipeline Monitoring and Greenhouse Gas Mitigation
用于管道监测和温室气体减排的可部署电化学甲烷传感器
  • 批准号:
    539430-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Collaborative Research and Development Grants
Development of stable lithium metal anode systems for high energy density lithium-sulfur batteries
高能量密度锂硫电池稳定锂金属负极系统的开发
  • 批准号:
    522451-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

高温高压极端条件下硬质陶瓷复合材料的合成和表征
  • 批准号:
    12364005
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
固相荧光内滤用于极端条件下砷、硫、碘等易变价离子的现场分析研究
  • 批准号:
    22376144
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
逐时降水随机模型构建与极端降水变化评估
  • 批准号:
    42307424
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长江中下游典型农作物碳氮比对极端天气气候事件的响应解析
  • 批准号:
    42371046
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
极端气候事件的牧户行为响应与发展韧性研究:基于支持政策视角
  • 批准号:
    72373145
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Enabling Extreme Fast-Charging of Lithium-ion Batteries with Covalently-Joined Electrode Architectures - Phase I
利用共价连接电极架构实现锂离子电池的极快充电 - 第一阶段
  • 批准号:
    577513-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Idea to Innovation
Novel Stem Cell Immunotherapy for MDR-Tuberculosis
耐多药结核病的新型干细胞免疫疗法
  • 批准号:
    10418739
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
Novel Stem Cell Immunotherapy for MDR-Tuberculosis
耐多药结核病的新型干细胞免疫疗法
  • 批准号:
    10640122
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
Fast Bayesian Inference at Extreme Scale
极大规模的快速贝叶斯推理
  • 批准号:
    2448776
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
SI2-SSE: Fast Dynamic Load Balancing Tools for Extreme Scale Systems
SI2-SSE:适用于超大规模系统的快速动态负载平衡工具
  • 批准号:
    1533581
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了