Trajectorial Martingales and Worst Case Approach to Market Models

轨迹鞅和市场模型的最坏情况方法

基本信息

  • 批准号:
    RGPIN-2018-03867
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

martingales; minmax; no arbitrage; pathwise stochastic integration; worst case modeling
鞅;极小极大;无套利;路径随机积分;最坏情形建模

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ferrando, Sebastian其他文献

Robust portfolio choice with derivative trading under stochastic volatility
  • DOI:
    10.1016/j.jbankfin.2015.08.033
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Escobar, Marcos;Ferrando, Sebastian;Rubtsov, Alexey
  • 通讯作者:
    Rubtsov, Alexey
Optimal investment under multi-factor stochastic volatility
  • DOI:
    10.1080/14697688.2016.1202440
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Escobar, Marcos;Ferrando, Sebastian;Rubtsov, Alexey
  • 通讯作者:
    Rubtsov, Alexey

Ferrando, Sebastian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ferrando, Sebastian', 18)}}的其他基金

Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
  • 批准号:
    194624-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
  • 批准号:
    194624-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
  • 批准号:
    194624-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
  • 批准号:
    194624-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
  • 批准号:
    194624-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive martingale expansions applications to mathematical finance signal processing stochastic processes
自适应鞅将应用扩展到数学金融信号处理随机过程
  • 批准号:
    194624-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
  • 批准号:
    RGPIN-2017-05657
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
  • 批准号:
    2118199
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
  • 批准号:
    RGPIN-2017-05657
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC: Fast martingales, large deviations and randomised gradients for heavy-tailed target distributions
DMS-EPSRC:重尾目标分布的快速鞅、大偏差和随机梯度
  • 批准号:
    EP/V009478/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
  • 批准号:
    RGPIN-2017-05657
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
  • 批准号:
    RGPIN-2017-05657
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
  • 批准号:
    RGPIN-2018-03867
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of high-dimensional martingales and its statistical applications
高维鞅理论及其统计应用
  • 批准号:
    18K11203
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了