Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
基本信息
- 批准号:RGPIN-2018-03867
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
martingales; minmax; no arbitrage; pathwise stochastic integration; worst case modeling
鞅;极小极大;无套利;路径随机积分;最坏情形建模
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferrando, Sebastian其他文献
Robust portfolio choice with derivative trading under stochastic volatility
- DOI:
10.1016/j.jbankfin.2015.08.033 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:3.7
- 作者:
Escobar, Marcos;Ferrando, Sebastian;Rubtsov, Alexey - 通讯作者:
Rubtsov, Alexey
Optimal investment under multi-factor stochastic volatility
- DOI:
10.1080/14697688.2016.1202440 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:1.3
- 作者:
Escobar, Marcos;Ferrando, Sebastian;Rubtsov, Alexey - 通讯作者:
Rubtsov, Alexey
Ferrando, Sebastian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferrando, Sebastian', 18)}}的其他基金
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
- 批准号:
194624-2012 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
- 批准号:
194624-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
- 批准号:
194624-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
- 批准号:
194624-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
"Non Probabilistic Financial Mathematics. Discretization of Processes, Wavelets and Applications."
“非概率金融数学。过程、小波和应用的离散化。”
- 批准号:
194624-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Adaptive martingale expansions applications to mathematical finance signal processing stochastic processes
自适应鞅将应用扩展到数学金融信号处理随机过程
- 批准号:
194624-2005 - 财政年份:2009
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPSRC: Fast Martingales, Large Deviations, and Randomized Gradients for Heavy-tailed Distributions
DMS-EPSRC:重尾分布的快速鞅、大偏差和随机梯度
- 批准号:
2118199 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPSRC: Fast martingales, large deviations and randomised gradients for heavy-tailed target distributions
DMS-EPSRC:重尾目标分布的快速鞅、大偏差和随机梯度
- 批准号:
EP/V009478/1 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
- 批准号:
RGPIN-2017-05657 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Trajectorial Martingales and Worst Case Approach to Market Models
轨迹鞅和市场模型的最坏情况方法
- 批准号:
RGPIN-2018-03867 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Theory of high-dimensional martingales and its statistical applications
高维鞅理论及其统计应用
- 批准号:
18K11203 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)