Partial Differential Equations and Probability
偏微分方程和概率
基本信息
- 批准号:CRC-2018-00154
- 负责人:
- 金额:$ 8.74万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physical systems subject to uncertainty are ubiquitous throughout the sciences. As a result, it is of fundamental importance to develop a well-posed mathematical theory to describe and analyze such systems. The proposed program is based in the subject of stochastic homogenization, which identifies the average, macroscopic behaviour of a physical system subject to microscopic, random effects. The nominee, a specialist in partial differential equations and probability, is committed to integrating techniques from both fields to provide a comprehensive understanding of this phenomena.
不确定性的物理系统在科学中无处不在。因此,发展一个适定的数学理论来描述和分析这类系统是至关重要的。该计划是基于随机均匀化的主题,它确定了平均,宏观行为的物理系统受到微观,随机效应。被提名者是偏微分方程和概率的专家,致力于整合这两个领域的技术,以全面了解这一现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin, Jessica其他文献
Developing a platform to evaluate and assess the security of wearable devices
- DOI:
10.1016/j.dcan.2018.10.009 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:7.9
- 作者:
Hale, Matthew L.;Lotfy, Kerolos;Lin, Jessica - 通讯作者:
Lin, Jessica
Modeling the glucose regulatory system in extreme preterm infants
- DOI:
10.1016/j.cmpb.2010.05.006 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:6.1
- 作者:
Le Compte, Aaron;Chase, J. Geoffrey;Lin, Jessica - 通讯作者:
Lin, Jessica
Utilization and Delivery of Specialty Palliative Care in the ICU: Insights from the Palliative Care Quality Network.
- DOI:
10.1016/j.jpainsymman.2022.03.011 - 发表时间:
2022-06 - 期刊:
- 影响因子:4.7
- 作者:
Chapman, Allyson Cook;Lin, Joseph A.;Cobert, Julien;Marks, Angela;Lin, Jessica;O'Riordan, David L.;Pantilat, Steven Z. - 通讯作者:
Pantilat, Steven Z.
Atypical Anorexia in Youth: Cautiously Bridging the Treatment Gap.
- DOI:
10.3390/children9060837 - 发表时间:
2022-06-05 - 期刊:
- 影响因子:2.4
- 作者:
Freizinger, Melissa;Recto, Michelle;Jhe, Grace;Lin, Jessica - 通讯作者:
Lin, Jessica
Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care
- DOI:
10.1016/j.cmpb.2007.04.006 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:6.1
- 作者:
Lin, Jessica;Lee, Dominic;Hann, Christopher E. - 通讯作者:
Hann, Christopher E.
Lin, Jessica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin, Jessica', 18)}}的其他基金
Partial Differential Equations and Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Partial Differential Equations And Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2021
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2021
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2020
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Partial Differential Equations and Probability
偏微分方程和概率
- 批准号:
CRC-2018-00154 - 财政年份:2019
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2019
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2018
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
DGECR-2018-00073 - 财政年份:2018
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant